

Properties of the Higgs boson

Linda Finco on behalf of the ATLAS and CMS Collaborations

INFN Torino

July 17th - 21st 2023

31st Lepton-Photon Conference - Melbourne

The Brout-Englert-Higgs Mechanism

The BEH complex scalar field

- Permeates the entire universe
- Gives mass to the elementary particles

To verify its existence, we must find the associated Higgs boson

The long road of the Higgs boson

~2010: Start of LHC

2012: Higgs boson discovery!

The long road of the Higgs boson

The long road of the Higgs boson

Higgs boson properties

- Electric charge
- Spin angular momentum
- Parity-Charge conjugation
- Mass
- Width
- Cross-sections, branching ratios and signal strength
- Couplings

Higgs boson properties

- Electric charge
- Spin angular momentum
- Parity-Charge conjugation
- Mass
- Width
- Cross-sections, branching
 ratios and signal strength
- Couplings

Higgs boson properties

- Electric charge Q = 0
- Spin ar
- Parity-(
- Mass
- Width
- Cross-s ratios d
- Coupli

Higgs boson spin and parity

- Probed via angular correlations in diboson decays (WW, ZZ, γγ)
- Many alternative spin-parity hypotheses tested
- Data compatible with spin zero and even parity, as predicted by SM

Higgs boson mass

- Only free SM parameter, it defines production and decay rates
- Measured with $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4I$, thanks to their high resolution
 - Precision dominated by statistics and experimental systematics
 - Precise photons, electrons and muons energy scale and resolution are crucial
- CMS measurement most precise up to now (0.11% of uncertainty), still based on partial Run 2 dataset (36 fb⁻¹)

10

Higgs boson mass

New $H \rightarrow \gamma \gamma$ measurement using full Run 2 data:

- Increased data sample (~4x)
- Improved estimation of photon energy scale with significantly reduced (~3x) uncertainties
- Optimized event classification strategy

Most precise measurement from a single channel!

Higgs boson mass

- ATLAS full-Run 2 measurement, combining $H \rightarrow ZZ \rightarrow 4I$ and $H \rightarrow \gamma\gamma$
- 0.09% of uncertainty

New most precise measurement!

Source	Systematic uncertainty on m_H [MeV]
$e/\gamma E_{\rm T}$ -independent $Z \to ee$ calibration	44
$e/\gamma E_{\rm T}$ -dependent electron energy scale	28
$H \to \gamma \gamma$ interference bias	17
e/γ photon lateral shower shape	16
e/γ photon conversion reconstruction	15
e/γ energy resolution	11
$H \to \gamma \gamma$ background modelling	10
Muon momentum scale	8
All other systematic uncertainties	7

Higgs boson width

- Standard Model predicts $\Gamma_H \sim 4 \text{ MeV}$
- Direct measurement strongly limited by experimental resolution
- Assuming equal on-shell and off-shell couplings:

Higgs boson width

- Indirect measurement from the on-shell/off-shell Higgs boson production
- Measured in the $H \rightarrow ZZ \rightarrow 4I$ and $H \rightarrow ZZ \rightarrow 2I2v$ decay channels
- First evidence of off-shell Higgs boson production

Higgs decays to bosons and fermions

Bosons

Fermions

In the SM, the Higgs boson interaction is proportional to m_V^2 and m_f

Higgs to Zy

- Very small signal: $\mathcal{B}(H \to Z_Y) \sim 1.5 \times 10^{-3}$
- Z leptonic decay ensures a clean signature (m₁ > 50 GeV)
- Photon requested to be well isolated

16

Higgs to Zy – ATLAS and CMS combination

- Similar strategy adopted
- Main differences: bkg uncertainties evaluation and Higgs mass value
- First evidence of the decay process

 $\mu = 2.2 \pm 0.7$ with local significance 3.4(1.6) σ

Cross-sections and branching fractions

- Inclusive cross-section first quantity to measure when establishing a channel
- Signal strength modifiers
 µ scale cross-sections
 and branching fractions
 relative to the SM

Cross-sections and branching fractions

- Inclusive cross-section first quantity to measure when establishing a channel
- Signal strength modifiers
 µ scale cross-sections
 and branching fractions
 relative to the SM

Cross-sections and branching fractions

First cross-sections at 13.6 TeV

- SM σ (pp \rightarrow H, m_H = 125.09 GeV)

Total uncertainty (scale ⊕ PDF+

QCD scale uncertainty

 $\sqrt{s} = 7 \text{ TeV}, 4.5 \text{ fb}^{1}$

√s = 8 TeV. 20.3 fb¹

√s = 13 TeV. 139 fb¹

10

√s = 13.6 TeV. 29.0-31.4 fb¹

11

12

13

√*s* [TeV]

- First measurement of Higgs boson production cross-section at 13.6 TeV by ATLAS in $H \rightarrow ZZ \rightarrow 4I$ and $H \rightarrow \gamma\gamma$ channels
- Same analysis strategy as in Run 2

σ_{pp→H} [pb]

100

90

80

70

60

50

40

30

20

10

0

ATLAS-CONF-2023-032

ATLAS

† H→γγ 🔺 H→ZZ*→4l

8

9

• Combined $H \rightarrow \gamma \gamma + H \rightarrow 4l$

Around 30 fb⁻¹ used (collected in 2022)

130

140

150

160

m_{yy} [GeV]

 $\sigma_{fid}^{YY} = 76_{-13}^{+14} (67.6 \pm 3.7) \text{ fb}$ $\sigma_{fid}^{4l} = 2.80 \pm 0.74 (3.67 \pm 0.19) \text{ fb}$ $\sigma_{tot} = 58.2 \pm 8.7 (59.9 \pm 2.6) \text{ pb}$

14

GeV

Events /

Data - Bkg.

-400

110

ATLAS-CONF-2023-032

120

The Simplified Template Cross-Section

- Maximize sensitivity to isolate BSM effects while reducing theory dependence
- Exploit many variables simultaneously

- Inclusive over the Higgs decays easier combination of the many channels explored
- Cross-sections in mutually exclusive regions of phase space (separated into prod. modes)

Differential distributions

 Higgs production at LHC described by kinematic variables and jet multiplicity, which help understanding QCD effects

 Differential cross-section measurements in several channels

Higgs boson couplings

- σ(ii → H) and B(H → ff) at LO are proportional to the square of effective Higgs boson couplings to the corresponding particle
- To test SM deviations, modified couplings are defined, denoted by scale factors κ
- The coupling modifier framework parametrizes production and decay modes inclusively

$$\sigma_i \times \mathcal{B}_f = \frac{\sigma_i \times \Gamma_f}{\Gamma_H}$$
$$\sigma_i \propto g_i^2 \quad \Gamma_f \propto g_f^2$$

The k framework

The **k** framework

- Scale all vector boson couplings with K_V, all fermion couplings with K_f
- Notice improvement with time, from discovery to run 1 to run 2

The Higgs boson couples with the particle mass!

Anomalous interactions

Through the study of
$$\kappa$$
 parameters,
effects of CP mixing can be explored
$$A(H \to ff) = -\frac{m_f}{v} \bar{\psi}_f (\kappa_f + i \tilde{\kappa}_f \gamma_5) \psi_f$$
$$A(H \to VV) \sim (A_1 + A_1^{BSM}) m_V^2 + A_2 + A_3$$
$$0^+ \quad 0^- \quad \text{Tree-level} \quad \text{loop} \quad f_{a3} \sim \frac{|A_0^-|^2}{|A_0^+|^2 + |A_0^-|^2}$$

12

- CP structure of Higgs couplings probed for t, τ, g, Z, W, with a variety of production and decay modes
- Two approaches: anomalous coupling and EFT interpretations
- Measurement globally agrees with SM 0⁺

Higgs self-coupling

• The potential energy of the Higgs field is

- 10³ times rarer than single H processes
- Many channels analysed
- Sensitivity better than 3 times the SM

ATLAS: -0.4 < κ_{λ} < 6.3 at 95% C.L. CMS: -1.24< κ_{λ} < 6.49 at 95% C.L.

Conclusions

- The Higgs boson is a profoundly different kind of particle
- Its discovery is of un-measurable value and it has been only possible thanks to the work of thousands of people
- During the last 11 years, ATLAS and CMS have deeply investigated its nature, going from observation to precise measurements
- All measurements made so far are found to be consistent with the SM, but many BSM scenarios predict only %-level deviations
- Run 3 era just began: next years will be crucial to shed light on New Physics phenomena

Related talks at Lepton-Photon

- "<u>Higgs boson mass measurement at CMS</u>", Andrey Korytov
- "Probing the nature of electroweak symmetry breaking with Higgs boson pairs in ATLAS", Yu Nakahama Higuchi
- "<u>Measurements of Higgs boson properties (mass, width, and Spin/CP) with the ATLAS detector</u>", Trevor Vickey
- "Measurements of Higgs boson production and decay rates and their interpretation with the ATLAS experiment", Andrew Mehta

...And many more!