

Upgrades of the experiments for the High Luminosity LHC

D. Contardo, IP2I CNRS/IN2P3 - on behalf of ALICE, ATLAS, CMS and LHCb

HL-LHC planning for p-p luminosity and experiment upgrades

ATLAS and CMS Phase-2 installed in LS3 (2026-2028) - now entering production

ALICE-3 and LHCb-II installed in LS4 (2023-2034) - in R&D phase, prepraring for approval

Outline

ATLAS - CMS - LHCb-II and ALICE-3

highlights of major upgrades and new experimental paradigms recent progress and stepping stone R&Ds

thanks to A. Di Mauro, M. Palutan, B. Gorini, F. Hartmann

ATLAS and CMS Phase-2 upgrade overview exploit HL-LHC at Linst. $\simeq 7.5 \times 10^{34}$ cm⁻² s⁻¹, Linteg. $\simeq 3000$ fb⁻¹ ($\simeq \times 10$ end of Run-3)

challenge to maintain current performance at <200> collisions/event* - sustain rates and irradiation new electronics, new tracker - timing layers - tracking in trigger - new endcap calorimeter in CMS

New GEM/RPC 1.6 < n < 2.4 Extended coverage to $\eta \simeq 3$ Luminosity upgrade https://cds.cern.ch/record/2759074 • 1% offline

Muon systems

tps://cds.cern.ch/record/2283189 DT & CSC new FE/BE readout

RPC back-end electronics

^{*} compared to <60> today, experiment ability to sustain collision pile-up is the limitation to instantaneous luminosity

ATLAS and CMS Phase-2 Tracker upgrade

 \simeq x 4(6) channels OT(IT), $|\eta|$ up to 4, tilted design, CO₂ cooling, serial powering (\simeq ½ weight)

Outer strip-Tracker

ATLAS and CMS Phase-2 Inner pixel-Tracker progress

new technology 65 nm TSMC ASIC enabling $50(25) \times 50(100) \, \mu m^2$ pitch at $\simeq 3 \, \text{GHz/cm}^2$

- Silicon sensors planar and 3D production started
- Front-end common ASIC development (RD53)
 - final ATLAS submitted, CMS imminent
- Hybridization of sensor proceeding at vendors
- Several modules of different types available (1st FE versions)

3D wafer

ITkPixV1 ASIC

 \simeq 4 kmodules

 \simeq 7 kmodules

ATLAS and CMS Phase-2 Outer strip-Tracker progress

- Substantial fractions of sensors delivered
- ASICs in production
- Hybrid pre-production started
- First assembly in rods, petals, disks performed
- Main mechanics components being ordered

CMS tilted rings

CMS endcap dee

modules CMS (left) \simeq 13000, ATLAS (right) \simeq 18000

1st barrel rods ATLAS (top) - CMS (bottom)

CMS trigger module hybrid

ATLAS and CMS Phase-2 Calorimeter electronics upgrade

full granularity at 40 MHz - improved precision - increased bandwidth

ATLAS CMS

Liquid Argon Calorimeter continuous readout at 40 MHz

ECAL PbWO₄ crystals readout

65 nm ADC ASIC16 bit dynamicsin production

ATC board 10 Gb/s waveform sampling final prototype

FE & main boards in production mechanics production completed

160 MHz sampling - 30 ps resolution (40 Gev/c) ASICs and component procurements on going operation at 8° for radiation tolerance

CMS Phase-2 High Granularity Calorimeter upgrade

first experiment implementation of CALICE concept developed for ILC

26 Si layers in CE-E, with Pb/Cu/CuW absorbers; 8 Si layers & 13 mixed Si/Scint layers in CE-H, with Cu/SS absorber

3D topology and $\sigma_{\rm t} \simeq 20~{\rm ps}$ for 25 GeV/c electrons

CMS upgrade Phase-2: High Granularity Calorimeter progress

8" hexagonal sensor

Final FE ASIC submitted (in BGA left) production started (~ 22000) trigger & data transfer ASICs in test (right) Hexaboards pre-series on going (left) module robot assembly (right)

Scintillating tile - production started SiPM in procurement process

Tileboard robot assembly PCB in procurement process

CE-H cassette test

Data transfer board being characterized

1st SS absorber disk

ATLAS and CMS Phase-2 Timing Layers

reduce number of collision vertices according to their time in the bunch crossing

endcap timing layers first use of Low Gain Avalanche photoDiodes

2 double sided thin layers providing $\sigma_t \simeq 30/50$ ps (/track)* before/after irradiation with 1.3 x 1.3 mm² pads

ATLAS 75 mm x 6.4 m² - 2.4 $< |\eta| < 4$ - 3.6 Mch.

Peripheral Electronics
Double sided layers

Moderator/ Inner part

- LGAD pre-prod. started
- final ASIC being tested
- modules assembly demonstrated

sensors $\approx 2 \times 4 \text{ cm}^2 - 8 \text{ kmodules (1 sensors)}$

CMS 45 mm x 14 m² - 1.6 < $|\eta|$ < 3 - 8.5 Mch.

- LGAD market survey completed
- last but final ASIC being qualified
- module assembly demonstrated

FE ASIC test - readout board and module assembly

sensors $\approx 2 \times 4 \text{ cm}^2 - 9 \text{ kmodules (1 or 2 sensors)}$

^{*} σ_t should remain $\lesssim 35$ ps with sensors being at $|\eta| < 3$

CMS Phase-2 Barrel Timing Layer

first HEP experiment "PET-like" system

thin layer of LYSO crystals + SiPM in front of ECAL providing $\sigma_t \simeq 30/60$ ps before/after irradiation

40 mm thick - 38 m^2 - 332 kcrystals early installation within the tracker tube, starting procurements

16 LYSO bars (56 x 3 x 3 mm³) per module (\simeq 21000)

SiPM on both sides

24 modules readout unit grouped in trays (right)

ATLAS and CMS Phase-2 Muon upgrades

new electronics, improved coverage & p_T resolution for trigger, sustain high rates

New layers, sMDT, TGC and RPC

ATLAS TGC: ASIC produced, pre-production of modules

ATLAS sMDT chamber production almost completed RPC moving to production - ASIC final protype in test

Electronics in Barrel DT and RPCs GEM/iRPC in 1.6 < η < 2.4 - GEM to η = 3

Slice tests DT, GEM & iRPC at P5

CMS GEM (left) & iRPC (right) in production

ATLAS and CMS Phase-2 Trigger and DAQ boards

ATLAS trigger: 1 MHz L0 in 10 μs - tracks with FPGA/GPU in 30 μs - 10 kHz output CMS trigger: (OT) tracks in FPGA at 40 MHz, 750 kHz full readout in 12.5 μs , 7.5 kHz output

high processing power FPGAs, 25 Gb/s links, AI PFlow algorithms in firmware

CMS

4 trigger boards tuned to detectors needs (cost) + 1 DAQ board pre-production completed for slice test and yield

ATLAS Global Trigger Board

single DAQ back-end board FELIX

LHCb upgrade II

exploit HL-LHC at Linst. = $1.5x10^{34}$ cm⁻² s⁻¹, Linteg. ≥ 300 fb⁻¹

challenge to maintain current performance at <40> collisions/event - sustain rates and irradiation high granularity, timing precision $\simeq 10$'s ps, 200 Tb/s data bandwidth

Eol 2017 - Physics Case 2018 - Framework TDR 2022 - Scoping Document 2024 - TDRs 2025-26 infrastructure LS3 2026-28 - construction 2027-33 - installation LS4 2033-2034

LHCb upgrade II magnet and muon stations

Scint . bars + WLS

inner region

new generation of MPGD: µ-RWELL 1st application

DLC coating machine at CERN

LHCb VELO upgrade II

First 4D-tracking system; and at high channel density, highest rates and radiation tolerance $r_{in}=7$ mm option driven by TID 1.2 GRad - NIEL 2.5 x10¹⁶ N_{eq}/cm^2 - 6 GHZ/cm² $\sigma_{hit}=11$ µm (40 µm pitch) ($\sigma_{IP}=26$ µm at 1 GeV/c), $\sigma_{t}=50$ ps (20 ps/track), 1.5 % X/X₀ /layer

LHCb Tracker upgrade II

1st large tracking area with Monolithic CMOS sensors $\approx 30 \text{ m}^2$, 1% X/X₀ / layer

Mighty Tracker 2 layers x 3 stations = 18 m^2

study small electrode (TJ-MALTA)

versus

large electrode (TSI ATLASPIX)

alternative technology/foundries possible

LHCb PID upgrade II

Cerenkov: RICH and TORCH concept, with resp. $\sigma_t \simeq 25 \& 15 \text{ ps}$ (70 ps SPTR)

ECAL: SpaCal(inner)/Shashlik (outer), 2-sides readout, $\sigma_t \simeq 20$ ps (at 5 GeV), $\sigma_E/E = 10\%/\sqrt{E} \oplus 1\%$

ALICE-3 is a new detector

exploit HL-LHC with 10 x RUN 3 statistics, $L_{integ.} = 35 \text{ nb}^{-1} \text{ HI } \& 18 \text{ fb}^{-1} \text{ pp}$

challenge of pointing precision and PID at low p up to $|\eta| = 4$, rate capability x 5(25) in HI(pp)

FoCal and ITS3 installation in LS3 2026-2028

ALICE-3 Lol 2022 - TDRs 2026-2027 construction 2028-32 - installation LS4 2033-2034

ALICE-3 upgrade Solenoid, muon and ECAL

ALICE Inner Tracker upgrades

highest precision and lightest tracking system; and closest to the beam Monotlithic CMOS new technology node TPSCo 65 nm with reticle stitching

28 cm bent sensors in ITS3, IRIS design in beam pipe in ALICE-3, pitch to $\lesssim 10 \, \mu m$ (25 μm DCA at 100 MeV/c)

ITS3 planned for LS3 3 layers at 18-24-30 mm - functional bent sensors

1st 28 cm sensors thinned to 50 µm, airflow cooling test set-up

ALICE-3 3 layers at 5 -12 - 25 mm

2.5 µm resolution, 0.1% X/X0 /layer NIEL 10¹⁶ neq/cm² - TID 300 MRad hit rate 100 MHz/cm² CO₂ colling -35° micro-channel plate attached to Berylium case (250 µm)

ALICE-3 Outer Tracker and PID

1st large area tracker 60 m² - $\sigma(p_T)/p_T$ = 2% at 1 GeV/c Monolithic CMOS sensors (TPSCo 65 nm)

45 m² ToF with Monolothic CMOS with gain (or LGADs) pitch 1 to 5 mm² - 20 ps resolution - 50 mW/cm²

- 8(9) barrel(endcap) layer(disks)
 - 10 µm resolution
 - $\lesssim 10\% \text{ X/X}_0 \text{ (total)}$
 - low power 20 mW/cm²
- Modules 10 x 10 cm²
 - industry standard for assembly and testing
 - water cooling at room temperature

Aerogel RICH + SiPM 34 m² with projective geometry

Outlook

ATLAS and CMS

enormous effort and impressive progress toward production final qualification of systems/assembly (modules, rods/stave...) on going with pre-series production and QA/QC at assembly centers is well advanced schedule remains challenging

ALICE-3 and LHCb-II

proceeding with R&D and toward approvals several innovation studies paving the path toward detectors for future colliders (see process to form new international DRD collaborations as ECFA detector R&D roadmap implementation) schedule is as well challenging