31st Lepton Photon Conference Ν MELBOURNE CONVENTION Ο & EXHIBITION CENTRE Ν 17 - 21 JULY ω

Km Baseline Neutrino Experiments

Liang Zhan
Institute of High Energy Physics, CAS
on behalf of the JUNO Collaboration

July. 17, 2023

Neutrino oscillation

 Observations from various neutrino sources at different baselines are consistent with the three neutrino oscillation framework

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{-i\delta_{1}} & 0 & 0 \\ 0 & e^{-i\delta_{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $heta_{23}\sim45\,{}^{\circ}$ by atmospheric neutrinos (1998)

 $heta_{13}\sim9\,^{\circ}$ by reactor and accelerator neutrinos (2012)

 $\theta_{12} \sim 34\,^\circ$ by solar neutrinos (2001)

From discovery to precision

- known: θ_{12} , θ_{13} , θ_{23} , Δm_{21}^2 , $|\Delta m_{32}^2|$
- Unknowns:
 - mass ordering
 - CP phase
 - $-\theta_{23}$ octant (< 45° or > 45°)

Km Baseline Neutrino Experiments

• A "golden" channel at km baseline for oscillation parameters and mass ordering

$$P_{ee}(L/E) = 1 - P_{21} - P_{31} - P_{32}$$

$$P_{21} = \cos^4(\theta_{13})\sin^2(2\theta_{12})\sin^2(\Delta_{21})$$

$$P_{31} = \cos^2(\theta_{12})\sin^2(2\theta_{13})\sin^2(\Delta_{31})$$

$$P_{32} = \sin^2(\theta_{12})\sin^2(2\theta_{13})\sin^2(\Delta_{32})$$

$$\Delta_{ij} = rac{\Delta m_{ij}^2 L}{4E}$$

- Independent on CP phase and θ_{23}
- 2-km oscillation: θ_{13} and Δm_{32}^2
- 50-km oscillation: $heta_{12}$ and Δm_{21}^2
- JUNO (52.5 km) can observe both Δm^2_{32} and Δm^2_{21} driven oscillations, and is sensitivity to neutrino mass ordering

This talk will focus on JUNO and include a brief overview of θ_{13} measurement by Daya Bay, RENO and Double Chooz

Outline

- Overview of JUNO
- JUNO detector progress
- Updates on JUNO physics sensitivity

Overview of Daya Bay, RENO, and Double Chooz

Jiangmen Underground Neutrino Observatory

The JUNO detector

Steel structure (φ 40.1 m) Acrylic vessel (φ 35.4 m) 20 kt liquid scintillator

Water Cherenkov detector

H = 44 m, D = 43.5 m 2400 20-inch PMTs

Top tracker

3 plastic scintillator layer

Water pool dimension

height: 44 m

diameter: 43.5 m

Light collection

17612 20-inch PMTs 25600 3-inch PMTs

The largest liquid scintillator detector Unprecedented energy resolution

Experiment	Daya Bay	BOREXINO	KamLAND	JUNO
LS mass	20 ton	~ 300 ton	~ 1 kton	20 kton
Coverage	~ 12%	~ 34%	~ 34%	~ 78%
Energy resolution	~ 8% /√E	~ 5% /√E	~ 6% /√E	~ 3% /√E
Light yield	~ 160 p.e. /MeV	~ 500 p.e. /MeV	~ 250 p.e. /MeV	> 1345 p.e. /MeV

The JUNO collaboration

• 75 institutions, ~650 members

Country	Institute	Country	Institute	Country	Institute
Armenia	Yerevan Physics Institute	China	SYSU	Germany	U. Mainz
Belgium	University jibre self-maxelles	China 🚅	Tsinghua O.		U. Tuebingen
Brazil	PUCE	China	-UCAS	Italy	INFN Catania
Brazil	UEL	China 👐	USTC	Italy	INFN di Frascati
Chile A	PCUC ()	China	Le of South China	Italy	INFN-Femara
Chile (SAPHIR	China	M. XIV.	Italy	INFN-Milano
Chile	UNAB	China	Wuhan t	Italy	PINFN-Milano Bicocca
China	BISEE	China .	Xi an Ji U	Italy	INFN Padova
China	Beijing Normal U.	China .	Xiamen University	Italy	INFN-Peragia
China	CAGS	China **/	Zhengzhou U.	Italy	INFN-Roma 3
China '	ChongQing University	China —	NUDT		JECS:
China	Clas	China	CUG-Beijing	Paki stan	PINSCECH (PAEC)
China	DGUT	China 🗽	ECUT-Nanchang City	Russia	INR/Moscow
China	Guangxi U.	China	CDUT-Chengdu	Russia	LINE
China	Harbin Institute of Technology	Czech	Charles VI	Russia	MSU
China	IHEP	Finland	University of Lyvaskyla	Slovakia	FMPICO
China	Jilin U.	France	IJCLab Orsay	Taiwan-China	National Chiao-Tung U.
China	Jinan U.	France	LP2i Bordeaux	Taiwan-China	National Taiwan U.
China	Nanjing U.	France	CPPM Marseille	Taiwan-China	National United U.
China	Nankai U.	France	IPHC Strasbourg	Thailand	NARIT A
China	NCEPU	France	Subatech Nantes	Thailand	PPRLCU 🙀
China	Pekin U.	Germany	RWTH Aachen U.	Thailand	SUT
China	Shandong U.	Germany	TUM	U.K.	U. Warwick
China	Shanghai JT U.	Germany	U. Hamburg	USA	UMD-G
China	IGG-Beijing	Germany	FZJ-IKP	USA	UC Irvine

A multi-purpose observatory

Several per day

Hundreds per day

~5000 IBDs for CCSN @10 kpc

Several IBDs per day

Neutrino oscillation & properties

IBD: inverse beta decay $\bar{v}_e + p \rightarrow e^+ + n$

CCSN: core-collapse supernova

PPNP 123 (2022) 103927 JPG 43 (2016) 030401

Neutrinos as a probe

physics

Requirement for rich physics program

Primary goal: measurements of neutrino mass ordering and oscillation parameters using reactor antineutrinos at 52.5 km baseline

Central Detector

Acrylic vessel

- 265 pieces of panels in total
- More than half panels have been installed (from top to equator)

Stainless steel structure

Completely assembled (except bottom layers to grant access)

Liquid scintillator

Purification plants are constructed onsite under initial flushing/testing

• 17612 20" PMTs + 25600 3" PMTs

- 5300 20" PMTs and 5500 3" PMTs installed (July, 2023)

High requirements on the cleanness and transparency

Inner diameter: 35.40 ± 0.04 m

Thickness: 124±4 mm

Light transparency > 96% @ LS

Radiopurity: U/Th/K < 1 ppt

Acrylic vessel

Stainless steel structure

- Supports the load of acrylic vessel, liquid scintillator, PMTs, front-end electronics, light separation plate, EM coils, etc.
- Acrylic vessel is supported via 590 connecting bars
- Made of low background SS304
- Assembly precision: < 3 mm to minimize clearance and to maximize PMTs

Completely assembled (except bottom layers to grant access), June, 2022

Lift platform for acrylic vessel installation

Liquid scintillator (20 kt)

Four purification plants to achieve target radio-purity 10^{-17} g/g U/Th and 20 m attenuation length at 430 nm.

Distillation to remove radioactive impurities

Add 2.5 g/L PPO and 3 mg/L bis-MSB

All the LS related systems will finish assembly in summer.

SS pipes to underground

85%

Photomultiplier Tubes (PMT)

Synergetic 20-inch and 3-inch PMT systems to ensure energy resolution and charge linearity

Acrylic cover

Stainless steel cover

Coverage: 75% for 20-inch PMTs and 3% for 3-inch PMTs

Bei-zhen Hu's Poster: The Double Calorimetry System in JUNO

PMT performance

All PMTs produced, tested, and instrumented with waterproof potting

		LPMT (20-inch)		SPMT (3-inch)	
		Hamamatsu	NNVT	HZC	
Quantity		5000	15012	25600	
Charge Collection		Dynode	МСР	Dynode	
Photon Detection Efficiency		28.5%	30.1%	25%	
Mean Dark Count Rate [kHz]	Bare	15.3	49.3	0.5	
	Potted	17.0	31.2	0.5	
Transit Time Spread (σ) [ns]		1.3	7.0	1.6	
Dynamic range for [0-10] MeV		[0, 100] PEs		[0, 2] PEs	
Coverage		75%		3%	
Reference		Eur.Phys.J.C 82 (2022) 12, 1168		NIM.A 1005 (2021) 165347	

PDE > 27% (original requirement in the design)

12.6k NNVT PMTs with highest PDE are selected for light collection from LS and the rest are used in the water Cherenkov detector.

Veto detector (Water Cherenkov)

~650 m rock overburden (1800 m.w.e.) $\rightarrow R_{\mu}$ = 4 Hz in LS, $\langle E_{\mu} \rangle$ = 207 GeV

35 kt of ultrapure water serving as passive shield and water Cherenkov detector.

- ✓ 2400 20-inch NNVT PMTs, detection efficiency of cosmic muons larger than 99.5%
- ✓ Keep the temperature uniformity $21^{\circ}C \pm 1^{\circ}C$
- ✓ Quality: ²²²Rn < 10 mBq/m³, attenuation length 30~40 m

Veto detector (Top Tracker)

Plastic scintillator from the OPERA experiment

- ✓ About 50% coverage on the top, three layers to reduce accidental coincidence
- ✓ All scintillator panels arrived on site in 2019
- ✓ Provide control muon samples to validate the track reconstruction and study cosmogenic backgrounds

Taishan Antineutrino Observatory (TAO)

2.8 ton GdLS detector	arXiv: 2005.08745
Baseline	~30 m
Reactor Thermal Power	4.6 GW
Light Collection	<mark>SiPM</mark>
Photon Detection Efficiency	>50%
Working Temperature	<mark>-50 ℃</mark>
Dark Count Rate [Hz/mm²]	~100
Coverage	~94%
Detected Light yield [PE/MeV]	<mark>4500</mark>
Energy resolution	< 2% @ 1 MeV

- ✓ SiPM is used to achieve high light yield with ~94% coverage
 - → 4500 PEs/MeV & energy resolution < 2% @ 1 MeV
- ✓ Gd-LS works at -50°C to lower the dark noise of SiPM

1:1 Prototype is being built at IHEP

Updates on JUNO physics sensitivities

For topics not covered here, please refer to PPNP 123 (2022) 103927

Reactor Antineutrino Oscillation

 $P_{\bar{\nu}_e \to \bar{\nu}_e} = 1 - \sin^2 2\theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32}) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}$

Inverse beta decay reaction

$$\bar{\nu}_e + p \rightarrow e^+ + n$$

Reactor cores: 10 → 8 (only two Taishan cores)
Update background estimations
New backgrounds included

Event type	Rate [/day]	Relative rate uncertainty	Shape uncertainty
Reactor IBD signal	60 > 47	-	-
Geo-ν's	1.1 -> 1.2	30%	5%
Accidental signals	0.9 -> 0.8	1%	negligible
Fast-n	0.1	100%	20%
⁹ Li/ ⁸ He	1.6 → 0.8	20%	10%
13 C(α , n) 16 O	0.05	50%	50%
Global reactors	0 → 1.0	2%	5%
Atmospheric $ u's$	0 → 0.16	50%	50%

Design in Physics book *J. Phys. G* 43:030401 (2016)

Precision of oscillation parameters: Chin.Phys.C 46 (2022) 12, 123001
Neutrino mass ordering sensitivity: paper under preparation

Neutrino Mass Ordering

	Design (J. Phys. G 43:030401 (2016))	Now (2022)	
Thermal Power	36 GW _{th}	26.6 GW _{th} (26%↓)	
Overburden	~700 m	~650 m	
Muon flux in LS	3 Hz	4 Hz (33%↑)	
Muon veto efficiency	83%	93% (12%↑)	
Signal rate	60 /day	47.1 /day (22%↓)	
Backgrounds	3.75 /day	4.11 /day (10%↑)	
Energy resolution	3% @ 1 MeV	2.9% @ 1 MeV (3%↑)	
Shape uncertainty	1%	JUNO+TAO	
3σ NMO sensitivity exposure	$< 6 \text{ yrs} \times 35.8 \text{ GW}_{th}$	$^{\sim}$ 6 yrs \times 26.6 GW _{th}	

JUNO sensitivity on NMO: 3σ (reactors only) @ ~6 yrs * 26.6 GW_{th} exposure

Estimation of NMO sensitivity with combined reactor + atmospheric neutrino analysis under preparation

Wuming Luo's talk: atmospheric neutrino oscillations at JUNO

Neutrino oscillation parameters

Chin. Phys. C 46 (2022) 12, 123001

Precision of $\sin^2 2\theta_{12}$, Δm_{21}^2 , $|\Delta m_{32}^2| < 0.5\%$ in 6 yrs

The improvement in precision over existing constraints will be about one order of magnitude except for θ_{13}

Diffuse Supernova Neutrino Background

Improvements: background evaluation (0.7 per year → 0.54 per year),

pulse shape discrimination (signal efficiency 50%→80%),

better DSNB signal model (non-zero fraction of failed Supernova)

S/B improved from 2 to 3.5

Neutrinos from Sun (E_{vis}>2MeV)

arXiv: 2210.08437

200 ton 13 C in JUNO LS \rightarrow enable observation of B8 solar neutrino CC and NC interactions on 13 C

Channels		Threshold	Signal	Event numbers			
		[MeV]		$[200 \text{ kt} \times \text{yrs}]$	after cuts		
CC	$\nu_e + {}^{13}\text{ C} \to e^- + {}^{13}\text{ N}(\frac{1}{2}^-; \text{gnd})$	$2.2~{ m MeV}$	$e^- + ^{13}$ N decay	3929	647	→	Correlated events
NC	$\nu_x + {}^{13}\text{ C} \rightarrow \nu_x + {}^{13}\text{ C} \left(\frac{3}{2}, 3.685\text{ MeV}\right)$	$3.685~\mathrm{MeV}$	γ	3032	738	٦	Singles event
ES	$\nu_x + e \rightarrow \nu_x + e$	0	e^-	3.0×10^5	6.0×10^4	Ţ	Singles event

Measurement of ⁸B solar neutrino flux (~5%) and oscillation parameters $\sin^2\theta_{12}$, Δm_{21}^2

Single visible signal channel

Prompt signal of the prompt-delayed pair signal channel

Neutrinos from Sun (E_{vis}<2MeV)

Sensitivity to ⁷Be, pep, and CNO solar neutrinos (arXiv: 2303.03910) with different radiopurity scenarios considered

Outlook of JUNO

Overview of Daya Bay, RENO, and Double Chooz

Experiment layout

Common feature: near/far relative measurement

Detector design

	AD PMTs	Energy resolution	Muon PMTs
Double Chooz	390 x 10"	6% at 1 MeV	78 × 8"
RENO	354 × 10"	7% at 1 MeV	67 × 10"
Daya Bay	192 × 8"	8% at 1 MeV	288 x 8" (near) 388 x 8" (far)

Latest result from Daya Bay

- Data-taking life: Dec 2011 Dec 2020
- Current best results on $\sin^2 2\theta_{13}$ with full data-set IBD selection from neutron capture on gadolinium

Best-fit results: $\chi^2/\text{ndf} = 559/518$ $\sin^2 2\theta_{13} = 0.0851^{+0.0024}_{-0.0024}$ (2.8% precision) Normal hierarchy: $\Delta m^2_{32} = +(2.466^{+0.060}_{-0.060}) \times 10^{-3} \text{eV}^2$ (2.4% precision) Inverted hierarchy: $\Delta m^2_{32} = -(2.571^{+0.060}_{-0.060}) \times 10^{-3} \text{eV}^2$ (2.3% precision)

Latest results of Double Chooz and RENO

• Double Chooz: 2011-2017

$$sin^2(2\theta_{13}) = 0.\,102 \pm 0.\,011\,(syst.\,) + 0.\,04\,(stat.\,)$$

Nature Phys. 16 (2020) 5, 558-564

• RENO: running since 2011

Present Global Landscape

Daya Bay provides the best measurement in the foreseeable future

Km baseline reactor neutrino experiment provide consistent Δ m 2 ₃₂ results with accelerator and atmospheric experiments

Summary

- Great success from reactor neutrino experiments at 2 km
- Daya Bay, RENO, Double Chooz obtained the best $\sin^2 2\theta_{13}$ precision, which is a key input for future neutrino experiments
- Bright future of JUNO is expected
 - Rich physics potentials
 - Neutrino mass ordering: 3 sigma with 6 years
 - Oscillation parameters: best precision for $\sin^2\theta_{12}$, Δm^2_{32} , Δm^2_{21}

Backup slides

Neutrino mixing

- 2015 Nobel Prize: Neutrinos oscillate and thus have masses.
- The flavor eigenstates are mixing of mass eigenstates.

$$egin{pmatrix}
u_e \\
u_\mu \\
u_ au \end{pmatrix} = egin{pmatrix} & \mathsf{PMNS} \\ \mathsf{matrix} \end{pmatrix} egin{pmatrix}
u_1 \\
u_2 \\
u_3 \end{pmatrix}$$

- Generation and detection via flavor eigenstates
 - Solar: v_e
 - Reactor: $\overline{\nu}_e$
 - Atmospheric: v_e , v_μ , v_τ
 - Accelerator: v_e , v_μ , v_τ
 - Cosmic, supernova, ...

- Mixing matrix measured by neutrino oscillation
 - Mixing angle: θ_{12} , θ_{13} , θ_{23}
 - CP violation phase: δ_{cp}
 - Majorana phases: δ_1 , δ_2 (invisible)
- Oscillation probability also relies on relative masses and mass ordering
 - Δm_{21}^2 , Δm_{32}^2 , Δm_{31}^2
 - $m_1 < m_2 < m_3$ or $m_3 < m_2 < m_1$

- Tiny but (at least two) non-zero masses
 - β decay

$$m_{eta} \equiv \sqrt{|U_{e1}|^2 m_1^2 + |U_{e2}|^2 m_2^2 + |U_{e3}|^2 m_3^2}$$

• Double β decay

$$m_{\beta\beta} \equiv \left| U_{e1}^2 m_1 + U_{e2}^2 m_2 + U_{e3}^2 m_3 \right|$$

Cosmology

$$\sum m_{\nu} = m_1 + m_2 + m_3$$

Online Scintillator Internal Radioactivity Investigation System (OSIRIS)

A 20-t detector to monitor radiopurity of LS before and during filling to the central detector

- ✓ Few days: U/Th (Bi-Po) ~ 1×10^{-15} g/g (reactor baseline case)
- ✓ 2~3 weeks: U/Th (Bi-Po) ~ 1 \times 10⁻¹⁷ g/g (solar ideal case)
- ✓ Other radiopurity can also be measured: ¹⁴C, ²¹⁰Po and ⁸⁵Kr

Eur.Phys.J.C 81 (2021) 11, 973

Possible upgrade to Serappis (SEarch for RAre PP-neutrinos In Scintillator): EPJC 82 (2022) 9, 779

 \checkmark A precision measurement of the flux of solar pp neutrinos on the few-percent level

Electronics

Underwater electronics to improve signal-to-noise ratio for better energy

resolution

3 20-inch PMTs connected to one underwater box

128 3-inch PMTs connected to one underwater box

Electronics assembly ongoing

Calibration

1D,2D,3D scan systems with multiple calibration sources to control the energy scale, detector response non-uniformity, and < 1% energy non-linearity

Cable system finished prototype test

Shadowing effect uncertainty from Teflon capsule of radioactive sources: < 0.15%

Taishan Antineutrino Observatory (TAO)

Goals:

- 1. Measure the reactor antineutrino spectrum with unprecedented energy resolution and see its fine structure for the first time.
- 2. Provide a reference spectrum for JUNO, other experiments, and nuclear databases
- 3. Search for light sterile neutrinos
- 4. Make improved measurements of isotopic yields & spectra

Constrain the fine structure in [2.5,6] MeV to < 1%

TAO sensitive in region 10^{-2} eV² < Δm_{41}^2 < 10eV²

Update of energy resolution

Change	Light yield in detector center [PEs/MeV]	Energy resolution	Reference
Previous estimation	1345	3.0% @1MeV	JHEP03(2021)004
Photon Detection Efficiency (27%→30%)	+11%↑		arXiv: 2205.08629
New PMT Optical Model	+8%↑	2.9% @ 1MeV	EPJC 82 329 (2022)

Positron energy resolution is understood:

$$\frac{\sigma}{E_{\rm vis}} = \sqrt{\left(\frac{a}{\sqrt{E_{\rm vis}}}\right)^2 + b^2 + \left(\frac{c}{E_{\rm vis}}\right)^2}$$
 Photon statistics Annihilation-induced γ s Dark noise

- Scintillation quenching effect
 - LS Birks constant from table-top measurements
- Cherenkov radiation
 - Cherenkov yield factor (refractive index & re-emission probability) is re-constrained with Daya Bay LS non-linearity
- Detector uniformity and reconstruction

Reactor Antineutrino Spectrum from TAO

- 1. ~94% coverage of SiPM with ~50% PDE
- 2. Inner diameter of target: 1.8 m, absorption of scintillation very small
- 3. Gd-LS works at -50° C, increase the photon yield

- ✓ Unprecedented energy resolution < 2% @ 1 MeV
- ✓ Shape uncertainty close to the assumption in the JUNO Physics Book (J. Phys. G43:030401 (2016))