

Yuehong Xie, Central China Normal University

(on behalf of LHCb & Belle II Collaborations)

Sixty years of CP violation

P violation 1956, Wu et al.

CP violation in K^0 mixing 1964, Cronin, Fitch et al.

Sixty years of CP violation

P violation 1956, Wu et al.

CP violation in K^0 mixing 1964, Cronin, Fitch et al.

Time-dependent CP violation in B^0 decays 2001, BaBar & Belle

Sixty years of CP violation

P violation 1956, Wu et al.

CP violation in K^0 mixing 1964, Cronin, Fitch et al.

Time-dependent CP violation in B^0 decays 2001, BaBar & Belle

Time-dependent CP violation in B_s^0 decays 2020, LHCb

CP violation in D^0 decay 2019, LHCb

CKM mechanism: the current theory

EWSB & diagonalisation of Yukawa mass matrix ⇒ quark mixing matrix

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = V_{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

$$\mathcal{L}_{W\pm} = \frac{g}{\sqrt{2}} \left(\overline{U}_L \gamma^{\mu} W_{\mu}^{+} V_{CKM} D_L + \overline{D}_L \gamma^{\mu} W_{\mu}^{-} V_{CKM}^{+} U_L \right)$$

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = V_{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

$$V_{CKM} = \begin{pmatrix} 1 - \frac{1^2}{2} & | & A|^3 (r - ih) \\ -| & 1 - \frac{1^2}{2} & A|^2 \\ A|^3 (1 - r - ih) & -A|^2 & 1 \end{pmatrix}$$

$$L.Wolfenstein PRL 51 (1983) 1945$$

$$(A, \lambda, \rho, \eta) \text{ to be measured in data}$$

$$\eta \neq 0 \Rightarrow \text{CP violation}$$

\square Unitarity of the CKM matrix: $V^{\dagger}V = I$

Test of CKM unitarity

Test the CKM mechanism via over-constraining the four parameters

☐ Tree quantities

- \triangleright γ from $B \rightarrow Dh$
- $\gt V_{ub}$ from $B \to \rho/\pi l^- \bar{\nu}$
- **>** ...

□ Loop quantities

- \triangleright B^0 mixing phase 2β
- \triangleright B mixing frequencies Δm_d & Δm_s
- \triangleright CPV in kaon mixing ϵ_K
- **>** ...

Great successes but

Selected highlights for today

- \square Significant improvements of β , β_s , γ by LHCb
- \square Belle II early measurements of β , γ , α
- □ Intriguing results in direct CP violation $(B \rightarrow 3h, B \rightarrow K\pi, D \rightarrow hh)$

Apologize for the biased selection of topics due to limited time. For a complete picture, see LHCb and Belle II talks in parallel sessions

- Charmless b-hadron decays at LHCb, Rongrong Song, 07/17
- Measurements of the CKM angle gamma at LHCb, Fidan Suljik, 07/18
- Mixing and CPV in charm decays at LHCb, Tom Hadavizadeh, 07/18
- Recent Belle II results on time-dependent CP violation and charm physics, Michele Verones, 07/18
- Recent Belle II results on hadronic B decays, Xiaodong Shi, 07/18

LHCb experiment

- Unique strength to study all b and c hadron species, particularly B_s⁰
- 9 fb $^{-1}$ @ 7, 8, 13 TeV

Results shown today based on full Run1 and Run2 data samples

Belle II experiment

- SuperB factory at SuperKEKB
- Unique strength to study final states with neutrinos and neutral particles
- 362 fb⁻¹ @ $\Upsilon(4S)$ for study of B^0 , B^{\pm}

Results shown today mainly based on data taken before 2022

arXiv:1011.0352

Time-dependent CP violation in beauty

Neutral B mixing and CPV

- $\Box B_q^0 \overline{B}_q^0 (q = d, s)$ oscillation

 \square CPV in interference of B_q^0 decay to CP eigenstate with and w/o mixing

Measuring time-dependent (TD) CPV

$$A_{CP}(t) = \frac{\Gamma(\overline{B}_q^0(t) \to f_{CP}) - \Gamma(B_q^0(t) \to f_{CP})}{\Gamma(\overline{B}_q^0(t) \to f_{CP}) + \Gamma(B_q^0(t) \to f_{CP})} = \frac{-C_f \cos(\Delta m_q t) + S_f \sin(\Delta m_q t)}{\cosh \frac{\Delta \Gamma_q t}{2} - D_f \sinh \frac{\Delta \Gamma t}{2}}$$

$$\lambda_f \equiv \frac{q}{p} \frac{\overline{A}_f}{A_f} = \eta_f \frac{q}{p} \frac{\overline{A}_{\bar{f}}}{A_f}, \qquad C_f = \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2}, \quad S_f = \frac{2\Im \lambda_f}{1 + |\lambda_f|^2}, \quad D_f = \frac{2\Re \lambda_f}{1 + |\lambda_f|^2}$$

 $S_f \neq 0$: mixing induced CPV

 η_f : CP eigen-value, affecting sign of S_f

 $C_f \neq 0$: direct CPV in decay

Requirements on experiments

- ightharpoonup Identify the initial flavour B or \bar{B}
- Reconstruct the proper decay time t
- > Understand experimental dilutions on S_f and C_f

Experimental effects

$$\Delta m_s = 17.7 \text{ ps}^{-1}$$
 $\sigma_t = 50 \text{ fs}$
 $\omega = 0.2$
 $\epsilon(t) = 1/(1 + \exp(-2t))$

 \Box Time resolution σ_t

$$S \rightarrow e^{-\frac{(\Delta m \sigma_t)^2}{2}} S = D_{\text{time}} S$$

$$D_{\rm time}$$
 ~0.7 for $\Delta m_s = 17.7~{
m ps^{-1}}$ with $\sigma_t = 50~{
m fs}$ ~0.7 for $\Delta m_d = 0.5~{
m ps^{-1}}$ with $\sigma_t = 1.5~{
m ps}$

□ Wrong tag probability ω

$$S \rightarrow (1-2\omega)S$$

 \Box Decay-time dependent efficiency $\epsilon(t)$

$$P(t) \rightarrow \epsilon(t) P(t)$$

Obtain info on σ_t , ω and $\epsilon(t)$ from data using control channels

LHCb method for TD study

Flavour tagging: info from other B
 & fragmentation particles

$$\epsilon_{\text{tag}}(1-2\omega)^2 \sim 5\%$$

• Large boost from pp collision

$$\beta \gamma \sim 10$$
, $L \sim 1$ cm

Silicon vertex system

$$\sigma_t \sim 45 \text{ fs}$$

Int. J. Mod. Phys. A30 (2015) 1530022

Belle II method for TD study

- Flavour tagging: info from other B $\epsilon_{\rm tag}(1-2\omega)^2 \sim 30\%$
- Asymmetric e^+e^- collision $\beta \gamma = 0.28$, $\Delta z \sim 200 \ \mu m$
- Silicon vertex detector

$$\sigma_t \sim 1.5 \text{ ps}$$

arXiv: 1808.10567

PRD 107 (2023) L091102

$$\Delta m_d = 0.516 \pm 0.008 \pm 0.005 \text{ ps}^{-1}$$

 $\tau_{B^0} = 1.499 \pm 0.013 \pm 0.005 \text{ ps}$

Belle: $\Delta m_d = 0.509 \pm 0.004 \pm 0.005 \text{ ps}^{-1}$

B^0 mixing phase $\phi_d = 2\beta^{eff}$

B factory flagship!

Tree-dominated $b \to c\bar{c}s$ processes (e.g. $B^0 \to J/\psi K_S^0$)

$$\lambda_f = rac{q}{p}rac{\overline{A}}{A} = \eta_f e^{-2ieta} \ S_f = -\eta_f \sin 2eta \ C_f = 0$$

$$A_{CP}(t) = -\eta_f \sin 2\beta \sin(\Delta m_d t)$$

- Belle: $\sin 2\phi_1 = 0.667 \pm 0.023 \pm 0.012$ PRL 108 (2012) 171802
- BaBar: $\sin 2\beta = 0.687 \pm 0.028 \pm 0.012$ PRD 79 (2009) 072009
- LHCb Run 1: $\sin 2\beta = 0.760 \pm 0.034$ PRL 115 (2015) 031601, JHEP 11 (2017) 170

- **□** Three CP-odd $b \rightarrow c\bar{c}s$ modes
- $B^0 \rightarrow J/\psi(\rightarrow \mu\mu)K_S^0$ (~306k signals)
- $B^0 \rightarrow J/\psi(\rightarrow ee)K_S^0$ (~24k signals)
- $B^0 \rightarrow \psi(2S)K_S^0$ (~43k signals)

■ New LHCb results

Run2
$$\sin 2\beta = 0.716 \pm 0.013 \pm 0.008$$

 $C = 0.012 \pm 0.012 \pm 0.003$

Run 1
$$\sin 2\beta = 0.760 \pm 0.034$$

Run1+2
$$\sin 2\beta = 0.724 \pm 0.014$$

Belle II results of $\sin 2\beta$

Туре	Mode	$\sin 2\phi^{\rm eff} = -\eta_f S$	A = -C	Ref.
$b \to c\bar{c}s$	$B^0 \to J/\psi K_S^0$	$0.720 \pm 0.062 \pm 0.016$	$0.094 \pm 0.044 {}^{+0.042}_{-0.017}$	arXiv:2302.12898
$b \to s\bar{s}s$	$B^0 \to \phi K_S^0$	$0.54 \pm 0.25^{+0.06}_{-0.08}$	$0.31 \pm 0.20 \pm 0.05$	arXiv:2307.02802
$b \to s\bar{d}d$	$B^0 \to K_S^0 \pi^0$	$0.74^{+0.20}_{-0.23} \pm 0.04$	$0.04^{+0.15}_{-0.14} \pm 0.05$	arXiv:2305.07555
$b \to s\bar{d}d$	$B^0 \to K^0_S K^0_S K^0_S$	$1.86^{+0.91}_{-0.46} \pm 0.09$	$-0.22^{+0.30}_{-0.27} \pm 0.04$	arXiv:2209.09547

Belle: $\sin 2\phi_1 = 0.667 \pm 0.023 \pm 0.012 (772M B\overline{B})$

World average of $\sin 2\beta$

$$sin(2\beta) \equiv sin(2\phi_1) \frac{\textit{HFLAV}}{\text{Summer 2023}}$$

- With Run2 data, LHCb overtakes B factories in the $\sin 2\beta$ measurement
- New W.A. improved by 35% in precision: $\sin 2\beta = 0.708 \pm 0.011$ (W.A.)
- Consistent with SM prediction: $\sin 2\beta = 0.731^{+0.029}_{-0.016}$ (CKMFitter)

B_s^0 mixing phase $\phi_s = -2\beta_s^{\rm eff}$

LHC flagship!

 \Box ϕ_s : precisely predicted in SM

$$\phi_s^{\text{SM}} \approx -2\beta_s = -0.0368^{+0.006}_{-0.009} \text{ rad (CKMFitter)}$$

Sensitive to NP in mixing

□ Golden mode: $B_s^0 \rightarrow J/\psi \phi$

$$A_{CP}(t) \approx -\eta_f \sin\phi_s \sin(\Delta m_s t)$$

Angular analysis to separate CP even $(\eta_f = 1)$ and odd $(\eta_f = -1)$ states

□ Major players: LHCb, ATLAS, CMS

Collab.	ϕ_s (rad)
LHCb early Run2 (all $b \rightarrow c\bar{c}s$)	-0.042 ± 0.025
LHCb early Run 2 $(B_s^0 \to J/\psi \phi)$	-0.081 ± 0.032
ATLAS $(B_s^0 o J/\psi \phi)$	-0.087 ± 0.041
CMS $(B_S^0 \to J/\psi \phi)$	-0.021 ± 0.045
HFLAV	-0.049 ± 0.019

LHCb, EPJC 79 (2019) 706 ATLAS, EPJC 81 (2021) 342 CMS, PLB 816 (2021) 136188

Update of ϕ_s with full Run2

LHCb-paper-2023-016 in preparation

No sign of CP violation

No sign of polarization dependence

ϕ_s^0 [rad]	-0.034 ± 0.023
$\phi_s{}^{\scriptscriptstyle \parallel} - \phi_s^{\scriptscriptstyle 0}$ [rad]	-0.002 ± 0.021
${\phi_s}^\perp - \phi_s^0$ [rad]	$-0.001 {}^{+\ 0.020}_{-\ 0.021}$
$\phi_s{}^{\mathcal{S}} - \phi_s^0$ [rad]	$0.022^{+0.027}_{-0.026}$
$ \lambda^0 $	$0.969^{+0.025}_{-0.024}$
$ \lambda^{\parallel}/\lambda^{0} $	$0.982^{+0.055}_{-0.052}$
$ \lambda^{\perp}/\lambda^0 $	$1.107 {}^{+ 0.082}_{- 0.076}$
$ \lambda^S/\lambda^0 $	$1.121{}^{+\ 0.084}_{-\ 0.078}$

New LHCb results

Parameter	Values
ϕ_s [rad]	$-0.039 \pm 0.022 \pm 0.006$
$ \lambda $	$1.001 \pm 0.011 \pm 0.005$
$\Gamma_s - \Gamma_d [ps^{-1}]$ $\Delta \Gamma_s [ps^{-1}]$	$-0.0056^{+0.0013}_{-0.0015} \pm 0.0014$ $0.0845 \pm 0.0044 \pm 0.0024$
$\Delta m_s [\mathrm{ps}^{-1}]$	$17.743 \pm 0.033 \pm 0.009$
$ A_{\perp} ^2$	$0.2463 \pm 0.0023 \pm 0.0024$
$ A_0 ^2$	$0.5179 \pm 0.0017 \pm 0.0032$
$\delta_{\perp} - \delta_0 \text{ [rad]}$	$2.903^{+0.075}_{-0.074} \pm 0.048$
$\delta_{\parallel} - \delta_0 \text{ [rad]}$	$3.146 \pm 0.060 \pm 0.052$

Run2
$$\phi_s^{J/\psi\phi} = -0.039 \pm 0.022 \pm 0.006 \text{ rad}$$

Run1+2 $\phi_s^{J/\psi\phi} = -0.044 \pm 0.020 \text{ rad}$
Run1+2 $\phi_s^{c\bar{c}s} = -0.038 \pm 0.018 \text{ rad}$

World average of ϕ_s vs $\Delta\Gamma_s$

Tention in $\Delta\Gamma_s$ remains

LHCb $\Delta\Gamma_s = 0.0845 \pm 0.0044 \pm 0.0024 \ \ ps^{-1}$ ATLAS $\Delta\Gamma_s = 0.0657 \pm 0.0043 \pm 0.0037 \ \ ps^{-1}$ CMS $\Delta\Gamma_s = 0.1032 \pm 0.0095 \pm 0.0048 \ \ ps^{-1}$

W.A. of ϕ_s improved by 15%: $\phi_s^{c\bar{c}s} = -0.039 \pm 0.016$ rad (W.A.)

Consistent with SM: $\phi_s^{SM} = -0.0368^{+0.006}_{-0.009}$ rad (CKMFitter)

CPV in penguin-dominated $B_s^0 \rightarrow \phi \phi$

- Tiny CPV expected in SM: $\phi_s^{s\bar{s}s} = 0.00 \pm 0.02$ rad
- Sensitive to NP in mixing and penguin diagrams
- New LHCb results

Run2
$$\phi_s^{s\bar{s}s} = -0.042 \pm 0.075 \pm 0.009 \text{ rad}$$

Run1+2
$$\phi_s^{s\bar{s}s} = -0.074 \pm 0.069 \text{ rad}$$

arXiv:2304.06198

No sign of CP violation & result consistent with SM

Projections for $\sin 2\beta$ and ϕ_s

 $\sin 2\beta$: σ^{\exp} already better than σ^{SM}

 ϕ_s : $\sigma^{\text{exp}} >> \sigma^{\text{SM}}$, with large room for improvement

CKM angles γ and α

CKM angle γ

LHCb dominating!

lacksquare Access γ from interference of $m{b}
ightarrow m{u} \ \ m{k} \ m{b}
ightarrow m{c}$ transitions in $B^\pm
ightarrow D h^\pm$ decays

$$\Gamma(B^{\pm} \to Dh^{\pm}) \propto |r_D e^{-i\delta_D} + r_B e^{i(\delta_B \pm \gamma)}|^2$$

 γ , δ_B , r_B : to be measured

 δ_D , r_D : external inputs

 \square Each B factory: $\sigma_{\gamma} \approx 15^{\circ}$

BaBar: $\gamma = (70 \pm 18)^{\circ}$ PRD 87 (2015) 052 015

BELLE: $\gamma = (73^{+13}_{-15})^{\circ}$ arXiv: 1301.2033

 $\ \square$ Previous LHCb combination : $\sigma_{\nu}\approx 4^{\circ}$

LHCb:
$$\gamma = (65.4^{+3.8}_{-4.2})^{\circ}$$
 JHEP 12 (2021) 141

Recent updated to include several new γ measurements

■ B decay modes

$$B^+ \to Dh^+, B^+ \to D^*h^+, B^+ \to DK^{*+}, B^+ \to Dh^+\pi^+\pi^-$$

$$\triangleright B^0 \rightarrow DK^{*0}$$
, $B^0 \rightarrow D^{\mp}\pi^{\pm}$

$$\triangleright$$
 $B_s^+ \rightarrow D_s^{\mp} K^{\pm}, B_s^+ \rightarrow D_s^{\mp} K^{\pm} \pi^+ \pi^-$

• D^0 decay modes

> 2-body:
$$D^0 \to K^+\pi^-, D^0 \to h^+h^-$$

> 3-body:
$$D^0 \to K_S^0 h^+ h'^-, D^0 \to h^+ h'^- \pi^0$$

► 4-body:
$$D^0 \to K^-\pi^+\pi^-\pi^+$$
, $D^0 \to K^-K^+\pi^-\pi^+$, $D^0 \to K^0S^\pi\pi^+\pi^-\pi^0$, $D^0 \to \pi^-\pi^+\pi^-\pi^+$

New γ results with $B \rightarrow Dh$ decays

$$\square$$
 γ in $B^{\pm} \rightarrow D[K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{\mp}]h^{\pm}$ arXiv:2209.03692

- Decay rates measured in bins of $K3\pi$ phase space
- Per bin strong-phase differences and coherences factor from CLEO and BESIII

$$\gamma = (54.8^{+3.8}_{-5.8}^{+0.6}^{+0.6}^{+6.7})^{\circ}$$

Uncertainty of external inputs dominates!

- \square γ in $B^\pm \to D [h^\pm h'^\mp \pi^0] h^\pm$ JHEP 07 (2022) 099
 - Evidence for CPV in $B^{\pm} \rightarrow \left[\pi^{\pm} K^{\mp} \pi^{0}\right]_{D} K^{\pm}$

$$\gamma = (56^{+24}_{-19})^{\circ}$$

$$\gamma = (116^{+12}_{-14})^{\circ}$$

EPJC 83 (2023) 547

Updated LHCb γ combination

\square New LHCb combination of many B and D decay modes

LHCb: $\gamma = (63.8^{+3.5}_{-3.7})^{\circ}$

10% improvement

Consistent with SM prediction: $\gamma = (65.5^{+1.1}_{-2.7})^{\circ}$ (CKMFitter)

γ/ϕ_3 measurements at Belle II

Several efforts to improve γ by adding Belle II early data to Belle data

 $oxed{\Box}$ Model-independent binned analysis of $B^\pm o Dig[K^0_S h^+ h^-ig]h^\pm$

Per bin D^0 strong-phase parameter from CLEO and BESIII using

$$\gamma = \phi_3 = (78.4 \pm 11.4(\text{stat}) \pm 0.5(\text{syst}) \pm 1.0 (\text{ext}))^\circ$$

JHEP 02 (2022) 063

CP-odd accessible only to B-factories

- Talk by Xiaodong Shi
- Evidence of opposite A_{CP} for even and odd states

Future prospect for γ

☐ Status now

- ► LHCb Run 2: $\sigma_{\gamma} \approx 4^{\circ}$
- ightharpoonup BESIII 3 fb⁻¹ $D\overline{D}$: error from strong phase $\sim 1^{\circ}$
- **□** ~2030
 - \succ LHCb upgrade I: $\sigma_{\nu} < 1^{\circ}$
 - ightharpoonup BESIII 20 fb⁻¹ $D\overline{D}$: error from strong phase $< 0.5^{\circ}$
- **□** ~2040
 - ightharpoonup LHCb upgrade II: $\sigma_{\gamma} < 0.4^{\circ}$
 - Need future charm factory

Data source	Integrated Lumi	year	γ sensitivity	
LHCb Run1 (7, 8TeV)	3 fb ⁻¹	2012	80	
LHCb Run2 (13TeV)	6 fb ⁻¹	2018	4°	
Belle II Run	50 ab ⁻¹	2025	1-2°	
LHCb upgrade I	50 fb ⁻¹	2030	<1°	
LHCb upgrade II	200 fb ⁻¹	2040	<0.4°	

Belle II potential for α/ϕ_2

 \square Access α from TD-CPV in $B^0 \to \pi\pi$, $\rho\rho$ decays

$$\alpha = (85.2^{+4.8}_{-4.3})^{\circ} \text{ (HFLAV)}$$

$$A_{CP}(t) = C\cos(\Delta m_d t) - S\sin(\Delta m_d t)$$

$$S = \sin 2\alpha + 2r\cos \delta \sin(\alpha + \beta)\cos 2\alpha$$

□ Control hadronic parameter r and δ using BFs and CPV of all isospin-related $B \to \pi\pi \ (B \to \rho\rho)$ channels, which are all accessible at Belle II

$$\mathcal{B}(\rho^+\rho^-) = (2.67 \pm 0.28 \pm 0.28) \times 10^{-5}, f_L = 0.956 \pm 0.035 \pm 0.033$$

$$\mathcal{B}\left(\rho^{+}\rho^{0}\right) = (2.32 \pm 0.22 \pm 0.27) \times 10^{-5}, f_{L} = 0.943 \pm 0.035 \pm 0.060$$

$$A_{CP} = -0.069 \pm 0.068 \pm 0.060$$

$$\mathcal{B}(\pi^+\pi^-) = (5.83 \pm 0.22 \pm 0.17) \times 10^{-6},$$

 $\mathcal{B}(\pi^+\pi^0) = (5.10 \pm 0.29 \pm 0.32) \times 10^{-6}, A_{CP} = -0.081 \pm 0.054 \pm 0.008$

$$\mathcal{B}(\pi^0\pi^0) = (1.38 \pm 0.27 \pm 0.22) \times 10^{-6}, A_{CP} = 0.14 \pm 0.46 \pm 0.07$$

Talk by Xiaodong Shi

PRD 107(2023)112009

Some results in direct CP violation

$$\left|\begin{array}{c|c} P \end{array}\right| \neq \left|\begin{array}{c|c} \overline{P} \end{array}\right|$$

$$A_{CP} = \frac{\Gamma(P \to f) - \Gamma(\overline{P} \to \overline{f})}{\Gamma(P \to f) + \Gamma(\overline{P} \to \overline{f})} \propto \sin(\delta_2 - \delta_1)\sin(\varphi_2 - \varphi_1)$$

CPV in charmless 3-body B decay

- □ Large local CPV observed in $B^{\pm} \rightarrow h^{+}h^{-}\pi^{\pm}$ decays using Run 1 data PRD 90 (2014) 112004
- Analysis of Run 2 data reveals new findings
 - Observation of inclusive A_{CP} in two modes

$$A_{CP}(K^{\pm}K^{+}K^{-}) = -0.037 \pm 0.002 \pm 0.002 \pm 0.003$$

 $A_{CP}(\pi^{\pm}\pi^{+}\pi^{-}) = +0.080 \pm 0.004 \pm 0.003 \pm 0.003$

arXiv:2206.07622

- Significant A_{CP} in $KK \leftrightarrow \pi\pi$ rescattering region, with a sign change across phase space
- Indication of $\chi_{c0}(1P)$ contribution, with a large A_{CP}
- Observation of A_{CP} in $B \rightarrow PV$ modes through angular analysis arXiv:2202.02038

 $A_{CP}(B^{\pm} \to \rho(770)^{0}K^{\pm}) = 0.150 \pm 0.019$

$K\pi$ isospin sum rule

 \square SM predicts $I_{K\pi} = 0$ with O(1)% theoretical uncertainty

$$I_{K\pi} = \mathcal{A}_{K^{+}\pi^{-}} + \mathcal{A}_{K^{0}\pi^{+}} \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}} \frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}$$

WA: $I_{K\pi} = (-13 \pm 11)\%$, precision limited by $K_S^0 \pi^0$

\square Belle II able to access all final states for testing $K\pi$ isospin sum rule

Talk by Xiaodong Shi

$$I_{K\pi} = (-3 \pm 13 \pm 5)\%$$

Consistent with SM and competitive with W.A.

Direct CPV in charm

Evidence of direct CPV in $D^0 o \pi^-\pi^+$

arXiv:2209.03179

- CPV observed in $A_{CP}(K^-K^+) A(\pi^-\pi^+)$
- PRL 122 (2019) 211803
- New measurement of $A_{CP}(K^-K^+)$ using Run2 data
- Subtracting mixing-related CPV: $a_f^d = A_{CP}(f) \frac{\langle t \rangle_f}{f} \Delta Y_f$

$$a_{K^-K^+}^d = (7.7 \pm 5.7) \times 10^{-4}$$

$$a_{\pi^-\pi^+}^d = (23.2 \pm 6.1) \times 10^{-4}$$

 1.4σ from zero

 3.8σ from zero

Search for CPV in multi-body decays

- $D^0 \rightarrow \pi^- \pi^+ \pi^0$: energy test arXiv:2303.04062
- $D_{(s)}^+ \rightarrow K^-K^+K^+$: per-bin fit arXiv:2306.12746
- $D^0 \rightarrow h^- h^+ \mu^+ \mu^-$: angular fit PRL 128 (2022) 221801
- No evidence for CPV

$$D_S^+ \to K^- K^+ K^+$$

$$D^+ \to K^- K^+ K^+$$

Summary

- The LHCb experiment has achieved the most precise measurements of the CKM angle β, β_s and γ, which all agree with the SM predictions.
- □ Belle II is ramping up and producing interesting results.
- □ A deeper understanding of CP violation is a long term goal that requires synergies of LHCb upgrades, Belle II and future charm experiments.

There will be no place for new physics to hide, if it has a non-SM flavour structure!

Spare slides

oxdot Maximum-likelihood fit to TD angular distributions of tagged B^0_s and \overline{B}^0_s decays

LHCb ϕ_s combination

Table 3: Summary of the systematic uncertainties ($\times 0.01$) for the main physics parameters.

Source	$ A_0 ^2$	$ A_{\perp} ^2$	ϕ_s	$ \lambda $	$\delta_{\perp} - \delta_0$	$\delta_{\parallel} - \delta_0$	$\Gamma_s - \Gamma_d$	$\Delta\Gamma_s$	Δm_s
			[rad]		[rad]	[rad]	$[ps^{-1}]$	$[ps^{-1}]$	$[ps^{-1}]$
Mass parametrization	0.04	0.03	0.03	0.02	0.15	0.12	0.02	0.04	0.03
Mass: shape statistical	0.04	0.04	0.05	0.09	0.62	0.33	0.02	0.01	0.11
Mass factorization	0.11	0.10	0.42	0.19	0.54	0.60	0.12	0.16	0.18
B_c^+ contamination ²	0.04	0.05	_	0.02	_	0.17	(0.07)	(0.03)	_
D-wave component	0.04	0.04	0.02	_	0.07	0.13	0.01	0.03	0.02
Ghost tracks	0.07	0.04	0.02	0.10	0.18	0.18	0.02	_	0.01
Multiple candidates	0.01	_	0.27	0.22	0.90	0.41	0.01	0.01	0.24
Particle identification	0.06	0.09	0.27	0.27	1.31	0.51	0.05	0.15	0.46
$C_{\rm SP}$ factors	_	0.01	0.01	0.03	0.73	0.41	_	0.01	0.04
DTR^3 calibration	_	_	0.03	0.02	0.11	0.07	_	_	0.05
DTR model applicability	_	_	0.08	0.03	0.26	0.09	_	_	0.09
Time bias correction	0.04	0.05	0.06	0.05	0.77	0.11	0.03	0.05	0.44
Angular efficiency	0.05	0.14	0.25	0.32	0.42	0.44	0.01	0.02	0.13
Angular resolution	0.01	0.01	0.02	0.01	0.02	0.08	_	0.01	0.02
Kinematic weighting	0.24	0.09	0.01	0.01	0.98	0.86	0.02	0.03	0.31
Momentum uncertainty	0.08	0.04	0.04	_	0.07	0.11	0.01	_	0.13
Longitudinal scale	0.07	0.04	0.04	_	0.10	0.09	0.02	_	0.31
Neglected correlations	_	_	_	_	4.20	4.96	_	_	_
Total systematic uncertainty	0.32	0.24	0.6	0.5	4.8	5.2	0.14	0.24	0.9
Statistical uncertainty	0.17	0.23	2.2	1.1	7.5	6.0	0.14	0.44	3.3

LHCb Run2 $B^0 \rightarrow J/\psi K_S^0$

Source	$\sigma(S)$	$\sigma(C)$
Fitter validation	0.0004	0.0006
Decay-time bias model	0.0007	0.0013
FT $\Delta \epsilon_{\mathrm{tag}}$ portability	0.0014	0.0017
FT calibration portability	0.0053	0.0001
$\Delta\Gamma_d$ uncertainty	0.0055	0.0017

D⁰ parameters from BESIII

mode	Para.	Ref.
$D^0 \to K^0_{S,L} \pi^+ \pi^-$	Strong phase	PRD 101 (2020) 112002
$D^0 \to K^0_S K^+ K^-$	Strong phase	PRD 102 (2020) 052008
$D^0 \to K^+ \pi^-$	Strong phase	EPJC 82 (2022) 1009
$D^0 \to K^-\pi^+\pi^+\pi^-$	Strong phase	arXiv:2103.05988
$D^0 \to K^+K^-\pi^+\pi^-$	CP-even fraction	arXiv:2212.06489
$D^0 \to K_S^0 \pi^+ \pi^- \pi^0$	CP-even fraction	arXiv:2305.03975
$D^0 \to \pi^+ \pi^- \pi^+ \pi^-$	CP-even fraction	arXiv:2208.10098

Used for *D* **parameters**

- ightharpoonup Current BESIII measurements of D^0 strong-phase parameters used 3 fb⁻¹ of $\psi(3770) \to D\overline{D}$ data
- ► BESIII will accumulate 20 fb⁻¹ of $\psi(3770) \rightarrow D\overline{D}$ data this year

LHCb upgrade II sensitivity

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins					
$R_K (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1 [274]	0.025	0.036	0.007	_
$R_{K^*} (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1 [275]	0.031	0.032	0.008	_
R_{ϕ},R_{pK},R_{π}	_	0.08,0.06,0.18	_	0.02,0.02,0.05	_
CKM tests					
γ , with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}$ ° [136]	4°	_	1°	_
γ , all modes	$\binom{+5.0}{-5.8}$ ° [167]	1.5°	1.5°	0.35°	_
$\sin 2\beta$, with $B^0 \to J/\psi K_S^0$	0.04 [609]	0.011	0.005	0.003	_
ϕ_s , with $B_s^0 \to J/\psi \phi$	49 mrad [44]	14 mrad	_	4 mrad	$22 \operatorname{mrad} [610]$
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad [49]	35 mrad	_	9 mrad	_
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad [94]	39 mrad	_	11 mrad	Under study [611]
$a_{ m sl}^s$	$33 \times 10^{-4} [211]$	10×10^{-4}	_	3×10^{-4}	_
$ V_{ub} / V_{cb} $	6% [201]	3%	1%	1%	_
$B_s^0, B^0{ ightarrow}\mu^+\mu^-$					
$\mathcal{B}(B^0 \to \mu^+\mu^-)/\mathcal{B}(B_s^0 \to \mu^+\mu^-)$	90% [264]	34%	_	10%	21% [612]
$ au_{B^0 ightarrow \mu^+ \mu^-}$	22% [264]	8%	_	2%	_
$ au_{B^0_s o\mu^+\mu^-} \ S_{\mu\mu}$	_	_	_	0.2	_
$b o c \ell^- ar{ u}_l$ LUV studies					
$\overline{R(D^*)}$	0.026 [215, 217]	0.0072	0.005	0.002	_
$R(J/\psi)$	0.24 [220]	0.071	_	0.02	_
Charm					
$\overline{\Delta A_{CP}(KK-\pi\pi)}$	$8.5 \times 10^{-4} [613]$	1.7×10^{-4}	5.4×10^{-4}	3.0×10^{-5}	_
$A_{\Gamma} \ (\approx x \sin \phi)$	$2.8 \times 10^{-4} [240]$	4.3×10^{-5}	3.5×10^{-4}	1.0×10^{-5}	_
$x \sin \phi$ from $D^0 \to K^+ \pi^-$	$13 \times 10^{-4} [228]$	3.2×10^{-4}	4.6×10^{-4}	8.0×10^{-5}	_
$x\sin\phi$ from multibody decays	_	$(K3\pi) \ 4.0 \times 10^{-5}$	$(K_{\rm S}^0\pi\pi)\ 1.2\times 10^{-4}$	$(K3\pi) \ 8.0 \times 10^{-6}$	_