

Why Standard Model Physics?

Search for deviations from SM:

- Many new physics models reveal deviations from SM similar to the ones from NLO or NNLO QCD

Example: contact interactions as opposed to bump-hunting search

Establish:

- Understanding of backgrounds to new physics searches
- Improved proton PDFs

Explore the SM self consistency:

Measure its parameters with high-precision

After the Higgs discovery, measuring the top and W mass precise enough is an enduring challenge

How we do it?
LHC:

Number of protons
Number of collisions that can be produced in one detector per cm^{2} and per second

Beam size at
interaction point (IP)

First papers (2010): $L_{\text {total }} \sim$ nb $^{-1}$

Date (UTC)

Now (2023): $L_{\text {total integrated }}$ ~ $260 \mathbf{f b}^{-1}$

How we do it?

Probes		Probes
	Physics	
Jets	Non-perturbative	W/Z Bosons
inclusive	QCD	inclusive V-jets
multijets		Ratio W/Z + jets
jet sub-structure	Perturbative QCD	W and $\mathrm{Z}+\mathrm{HF}$
HF production		
	Proton PDF	Top quark
Photons	$\begin{aligned} & \text { Valence, strange quarks } \\ & \text { Gluons } \end{aligned}$	
inclusive diphotons		Dibosons
$\underline{\gamma+j e t s}$	EWK corrections	WLjets
$\mathrm{y}+\mathrm{HF}$	Electroweak	
Hadrons	parameters	Higgs

Combine analyses, e.g. to obtain the most information about PDFs

How we do it?

Probes		Probes
	Physics	
Jets	Non-perturbative	W/Z Bosons
inclusive diliets	QCD	inclusive V+jets
multijets		Ratio $\mathrm{W} / \mathrm{Z}+$ jets
jet sub-structure	Perturbative QCD	W and $\mathrm{Z}+\mathrm{HF}$
HF production		
Photons	Proton PDF Valence, strange quarks Gluons	Top quark
inclusive diphotons		Dibosons
$\gamma+$ jets	EWK corrections	WW, WZ, zz, wr, Zv
$\mathrm{v}+\mathrm{HF}$		+jets
	Electroweak	Higgs
Hadrons	parameters	Higgs

Combine analyses, e.g. to obtain the most information about PDFs

Overview of Standard Model measurements at LHC

Publication list

15 orders of magnitude

CMS has similar plots (see) and explored similar phase space

QCD with Jets and Photons

Multi-differential measurements of the dijet cross section

Double-differential (2D) measurements

Measurement with jet algorithms: anti-kt R=0.4 anti-kt $\mathrm{R}=0.8$

Measured as a function of the kinematic properties of the two jets with largest transverse momenta

Dijet invariance mass

Multi-differential measurements of the dijet cross section

Double-differential (2D) measurements

Measurement with jet algorithms:
anti-kt R=0.4
anti-kt $\mathrm{R}=0.8$

Comparison to fixed-order theory calculations at NNLO, for different PDF predictions:

CT18
ABMP16
MSHT20
NNPDF3. 1

Multi-differential measurements of the dijet cross section

Triple-differential (3D) measurements

Measurement with jet algorithms: anti-kt R=0.4 anti-kt R=0.8

Average djet transverse momentum

Multi-differential measurements of the dijet cross section

CMS-PAS-SMP-21-008

Triple-differential (3D) measurements

Measurement with jet algorithms:
anti-kt R=0.4
anti-kt $\mathrm{R}=0.8$

Comparison to fixed-order theory calculations at NNLO, for different PDF predictions:

CT18
ABMP16
MSHT20
NNPDF3.1
Total of 15 rapidity regions

PDF fits from HERA DIS and CMS 3D dijet data

Extraction of Strong Coupling Constant (as)

PDF fit repeated with as as a free parameter
2D: $\alpha_{\mathrm{s}}\left(m_{\mathrm{Z}}\right)=0.1201 \pm 0.0010($ fit $) \pm 0.0005($ scale $) \pm 0.0008($ model $) \pm 0.0006$ (param.)
3D: $\alpha_{\mathrm{s}}\left(m_{\mathrm{Z}}\right)=0.1201 \pm 0.0012($ fit $) \pm 0.0008$ (scale) ± 0.0008 (model) ± 0.0005 (param.)
About 1σ from world average

Measurement of primary Lund Jet Plane density

Lund Jet Plane: representing QCD radiation in parton shower/internal structure of jets

Representation of the phase space of $1 \rightarrow 2$ partonic splittings inside jets

Anti-K $\mathrm{K}_{\mathrm{T}} 4$ Jets

Splitting angle of the branching ΔR

Measurement of primary Lund Jet Plane density

Lund Jet Plane: representing QCD radiation in parton shower/internal structure of jets

Representation of the phase space of $1 \rightarrow 2$ partonic splittings inside jets

Splitting angle of the branching ΔR

Measurement of primary Lund Jet Plane density

Measurement can be used as an input to improve the description from event generators and for future developments of parton showers with corrections beyond leading-logarithmic accuracy

Different Pythia tunes

Different parton showers

Production cross section of pairs of isolated photons

direct photons

fragmentation

non-prompt

after hadronization

Integrated fiducial cross section [pb]
Diphox NLO

$$
\begin{array}{lllll}
0 & 10 & 20 & 30 & 40
\end{array}
$$

Higher order corrections at NNLO necessary to describe the data

The strong coupling strength α_{s}

The strong force is still the least well known interaction of nature α_{s} uncertainty ~1\%

- Impacts physics at the Planck scale:
- EW vacuum stability, Grand Unification
- Is among the dominant uncertainties of several precision measurements at colliders
- Higgs couplings at the LHC
- EW precision observables at e+e- colliders

World Average (PDG): $\alpha_{s}\left(m_{z}\right)=0.1179 \pm 0.0009$
Conventionally determined at the reference scale $\mathbf{Q}=\mathrm{mz}$ Decreases ("runs") as $\alpha_{s} \sim \ln \left(Q^{2} / \Lambda^{2}\right)^{-1}$

Determination of the strong coupling constant from transverse energy correlations arXiv:2301.09351
Energy-energy correlation (EEC): event-shape observable, infrared safe

TEEC: $\quad \frac{1}{\sigma} \frac{\mathrm{~d} \Sigma}{\mathrm{~d} \cos \phi} \equiv \frac{1}{\sigma} \sum_{i j} \int \frac{\mathrm{~d} \sigma}{\mathrm{~d} x_{\mathrm{T} i} \mathrm{~d} x_{\mathrm{T} j} \mathrm{~d} \cos \phi} x_{\mathrm{T} i} x_{\mathrm{T} j} \mathrm{~d}_{\mathrm{T} i} \mathrm{~d} x_{\mathrm{T} j}=\frac{1}{N} \sum_{A=1}^{N} \sum_{i j} \frac{E_{\mathrm{T} i}^{A} E_{\mathrm{T} j}^{A}}{\left(\sum_{k} E_{\mathrm{T} k}^{A}\right)^{2}} \delta\left(\cos \phi-\cos \varphi_{i j}\right)$
ATEEC: $\frac{1}{\sigma} \frac{\mathrm{~d} \Sigma^{\text {asym }}}{\mathrm{d} \cos \phi}=\left.\frac{1}{\sigma} \frac{\mathrm{~d} \Sigma}{\mathrm{~d} \cos \phi}\right|_{\phi}-\left.\frac{1}{\sigma} \frac{\mathrm{~d} \Sigma}{\mathrm{~d} \cos \phi}\right|_{\pi-\phi}$

Dependence on
α_{s} variation of
± 0.001

Determination of the strong coupling constant from transverse energy correlations

TEEC (ATEEC) distributions are fitted to extract α_{s}

ATEEC: $\alpha(\mathrm{mz})=0.1185 \pm 0.0009$ (exp.) ${ }^{+0.0025}{ }_{-0.0012}$ (theo.)
other $\mathrm{a}_{\mathrm{s}}\left(\mathrm{M}_{\mathrm{z}}\right)$ measurements

W and Z boson production physics

The Drell-Yan process is a standard candle for precision measurements at the LHC

The p_{T} of the W, \mathbf{Z} bosons comes from from higher order corrections to the leading order Drell-Yan processes...
..... and from non-perturbative effects such as the primordial k_{T} of the incoming partons.

Factorize the production dynamic and the decay kinematic properties of the dilepton system

$$
\frac{d \sigma}{d p d q}=\frac{d^{3} \sigma^{U+L}}{d p_{T} d y d m}\left(1+\cos ^{2} \theta+\sum_{i=0}^{7} A_{i}\left(y, p_{T}, m\right) P_{i}(\cos \theta, \phi)\right)
$$

A_{i} angular coefficients: dynamics
Fiducial cuts removed by analytic integration of $(\cos \theta, \phi)$ in the full phase space of the decay leptons through the measured Ai coefficients
lepton angular $\cos \theta$ and ϕ distributions in the Collins-Soper frame

Rapidity

Run-1 8 TeV data only
negligible theoretical uncertainties for all measurements

First comparison to N3LO QCD predictions and N4LL resummation

Transverse Momentum

Determination of $\alpha_{s}\left(\mathrm{~m}_{\mathrm{z}}\right)$ from $\mathrm{Z} \mathrm{p}_{\mathrm{T}}$ at 8 TeV

Take advantage of this fantastic precision of $\mathbf{Z} \mathrm{p}_{\mathbf{T}}$ measurement to extract $\alpha_{s}\left(\mathrm{mz}_{\mathrm{z}}\right)$

Z bosons produced in hadron collisions recoil against QCD initial-state radiation: ISR gluons will boost the \mathbf{Z} in the transverse plane

The position of the \mathbf{Z} рт peak
 is sensitive to $\alpha_{s}(m z)$

 at N3LO+N4LL
$\alpha_{s}=0.11828_{-0.00088}^{+0.00084}$
(uncertainty $\sim 0.7 \%$)
Most precise experimental determination of $\mathrm{a}_{\mathrm{s}}(\mathrm{mz})$, as precise as the PDG and Lattice calculation and world averages

Pile-up events add energy to the recoil and hinder the experimental extraction of W pT Take dataset with very low multiple hard interactions per bunch crossing ATLAS collected such dataset at $\sqrt{ } \mathrm{s}=5$ and 13 TeV

Precise measurements and predictions of the spectra for $\mathrm{p}_{\mathrm{T}}<\sim 30 \mathrm{GeV}$ are particularly interesting for future measurement of the W-boson mass at LHC

$$
\sqrt{ } \mathrm{s}=13 \mathrm{TeV}
$$

Compared to DYTURBO predictions with different PDF sets

Compared with different MC predictions

DYTURBO resummed predictions show the best agreement and generally match the data at the percent level

New W mass measurement from ATLAS

Determine the W boson mass from the dependence of the leptonic transverse momentum (p_{T}) and the transverse mass (m_{T})

$$
M_{w} \text { shift }= \pm 50 \mathrm{MeV}
$$

Revisited measurement from 2017, using the same data, but with more advanced physics model and profile likelihood fitting:

- Advantage: Reduce systematic uncertainties during the fit
- Disadvantage: Computational expensive, challenging to investigate systematics

W mass: physics modeling and analysis improvements

Physics modeling

- Baseline: Pythia AZ tune (based on Z boson)
- Z Boson Data, Parton Shower Variations
- New Verifications:
- AZ tune describes hadronic recoil spectrum of W's in low-pileup data at 5 TeV within experimental uncertainties
- DYTurbo (resumed calculation) also agrees with AZ Tune
- Treatment of angular coefficients unchanged
- Parton Distribution Functions:
- Studied full set of available PDF Sets at NNLO: CT10, CT14, CT18, MMHT2014, MSHT20, NNPDF3.1, NNPDF4.0
- New Baseline CT18

Analysis improvements

- Multijet Background Estimation

- Systematic shape variations using PCA
- New transfer function from CR to SR
- Reduction of uncertainty by 2 MeV
- EWK uncertainty evaluated at detector level
- increase uncertainty by 1-2 MeV
- Recovering data in the electron channel
- Increased statistics by 1.5%

Add W width as NP parameter

- Improving random generator setup for the electron energy calibration

New W mass measurement from ATLAS

$$
m_{w}=80360 \pm 5(\text { stat. }) \pm 15 \text { (syst.) }=80360 \pm 16 \mathrm{MeV} \quad(0.02 \% \text { uncertainty })
$$

Previous measurement from 2017: $\mathrm{m}_{\mathrm{w}}=80370 \pm 19 \mathrm{MeV}$

Measurement of the production of a W boson in association with a charmed hadron

Measuring Wc production probes the strangeness in the proton (PDF)

\rightarrow	$W^{-} c$	$W^{+} \bar{c}$		
gs	$\sim 90 \%$			
$g \bar{s}$		$\sim 95 \%$		
$g d$	10%			
$g \bar{d}$		5%		cKM
:---:				
suppressed				

Constrain the ratio between strange and non-strange sea quark PDFs

Probe the level of asymmetry between s and s-bar

Two different measurement approaches

Measurement of the production of a W boson in association with a charmed hadron

 Two different measurement approaches Both measure inclusive and differential cross sectionsCMS
Measure charm content by tagging charm jets

CMS Preliminary	$138 \mathrm{fb}^{-1}(13 \mathrm{TeV})$
	T111101
Total uncertainty	Parton level
	$\mathrm{p}_{\mathrm{T}}^{\text {cjet }}>30 \mathrm{GeV}, \mathrm{l}^{\text {c jet }} \mathrm{l}<2.4$
Statistical uncertainty	$\mathrm{p}_{\mathrm{T}}^{\prime}>35 \mathrm{GeV}, \mathrm{I}^{\prime} \mathrm{l}<2.4$
Predictions: NLO MCFM + NLO PDF	Data
\square CT18: $164.9{ }_{-112.1}^{+1.7} \mathrm{pb}$	163.4 ± 0.5 (stat.) ± 6.2 (syst.) pb
\triangle CT18Z: $176.4_{-12.8}^{+15.2} \mathrm{pb}$	\checkmark
\diamond MMHT14: $182.9{ }_{-13.6}^{+17.1} \mathrm{pb}$	\checkmark
§ ABMP16: $183.6{ }_{-8.4}^{+7.9} \mathrm{pb}$	
* NNPDF3.0: $161.9{ }_{-9.1}^{+8.5} \mathrm{pb}$	
\% NNPDF3.1: $175.2{ }_{-9.5}^{+9.1} \mathrm{pb}$	$\longmapsto \sim$
$50 \quad 100$	$150 \quad \sigma(\mathrm{~W}+\mathrm{c})[\mathrm{pb}]$

ATLAS

Measure charm content by identifying $\mathbf{D}\left(^{*}\right)$ mesons

 \section*{Measurement of tau lepton polarization in \mathbf{Z} boson decays}
 \section*{Measurement of tau lepton polarization in \mathbf{Z} boson decays}

Measurement of t polarization can probe underlying electroweak parameters: $\boldsymbol{A}_{\boldsymbol{\tau}}, \boldsymbol{\operatorname { s i n }}^{2}\left(\boldsymbol{\theta}_{\mathbf{w}}\right)$

Result extracted from a simultaneous fit to 11 categories (leptonic/hadronic)

Agrees with SM expectations

Precision not far from single LEP experiments

First ever search for this rare decay mode, SM BR ~ 10-6 Possibly sensitive to new physics
e.g existence of a Z' could enhance cross section

Limit set on the ratio of BR $\mathbf{Z} \rightarrow \tau \tau \mu \mu$ relative to $\mathbf{Z} \rightarrow \mu \mu \mu \mu$

Ratio above 6.2 excluded at 95\% CL Corresponds to 6.9x SM expectation

Top quark

Top quark pair production

New top cross section measurements from ATLAS and CMS at 13.6 TeV, consisted with NNLO+NNLL theoretical predictions
(ATLAS: e μ channel; CMS: dilepton, lepton+jets)

New measurement from ATLAS
in eu channel at 13 TeV
(Experimental uncertainty: ~1.8\%)

Start constraining gluon PDFs!

Top quark mass measurements

Measured in different channels with different techniques

Best single measurement is from CMS, lepton+jets profile likelihood new result with 13 TeV data
$m_{\text {top }}=171.77 \pm 0.37 \mathrm{GeV}$
Uncertainty reached ~ 0.2\%
40\% improvement relative to previous measurement

ATLAS+CMS Preliminary

LHCtopWG
World comb. (Mar 2014) [2] stat
total uncertainty
LHC comb. (Sep 2013) LHctopwg World comb. (Mar 2014) ATLAS, I+jets
ATLAS, dilepton
ATLAS, all jets ATLAS, single top
ATLAS, dilepton
ATLAS, all jets
ATLAS, I+jets
ATLAS comb. (Oct 2018) ATLAS, leptonic invariant mass ATLAS, dilepton (*)
CMS, I+jets
CMS, dilepton
CMS, all jets CMS, $1+$ jets CMS, dilepton CMS, all jets CMS, single top CMS comb. (Sep 2015) CMS, I+jets CMS, dilepton CMS, all jets CMS, all jets
CMS, single top CMS, I+jets CMS, boosted

* Preliminary

Preliminary

Dibosons and tribosons

Diboson production at the LHC

Diboson production cross-section measurements

Four-lepton production in association with jets (non-resonant production of \mathbf{Z} bosons)

Precision already enough to test predictions made recently available at next-to-next leading order (NNLO) in QCD
nNNLO+PS with MiNNLOps
Buonocore

Better than Madgraph or Powheg EWK corrections needed to improve agreement for m_{41}

Vector boson fusion, vector boson scattering, and triboson production

Rare SM processes with cross sections down to < 1 fb-1

See plenary talk from Marcel Vos on Friday

VBF, VBS, and Triboson Cross Section Measurements Status: February 2022

$-\left[\mathrm{n}_{\text {jet }}=0\right]$
$\mathrm{W}_{\gamma \gamma} \rightarrow \ell \nu \gamma \gamma$
$-\left[\mathrm{n}_{\text {jet }}=0\right]$
$\mathrm{WW}{ }_{\gamma} \rightarrow \mathrm{e} \nu \mu \nu \gamma$
WWW, (tot.)
$-W W W \rightarrow \ell v \ell v j$

- WWW $\rightarrow \ell \ell \ell \ell \nu$ WWZ, (tot.)
Hjj VBF
$-\mathbf{H}(\rightarrow \mathbf{W W}) \mathbf{j j}$ VBF
- $\mathbf{H}(\rightarrow \gamma \gamma) \mathbf{j j}$ VBF
$\mathrm{W}_{\mathrm{jj}} \mathrm{EWK}(\mathrm{M}(\mathrm{jj})>1 \mathrm{TeV})$
$-\mathrm{M}(\mathrm{jj})>500 \mathrm{GeV}$
Zjj EWK
$\mathbf{Z}_{\gamma \mathbf{j} \mathbf{j}} \mathrm{EWK}$
$\gamma \gamma \rightarrow$ WW
(WV+ZV) jj EWK
$\mathbf{W}^{ \pm} \mathbf{W}^{ \pm} \mathbf{j} \mathbf{j}$ EWK
WZjj EWK
ZZjj EWK

Reference

[fb ${ }^{-1}$]
20.2 PLB 781 (2018) 55
PRD 93, 112002 (2016) PRD 93, 112002 (2016) PRL 115, 031802 (2015) PRL 115, 031802 (2015) EPJC 77 (2017) 646 arXiv:2201.13045 EPJC 77 (2017) 141 EPJC 77 (2017) 141 EPJC 77 (2017) 141 PLB 798 (2019) 134913 EPJC 76 (2016) 6
ATLAS-CONF-2021-014 PRD 92, 012006 (2015) ATLAS-CONF-2019-029 ATLAS-CONF-2015-060 ATLAS-CONF-2015-06 EPJC 77 (2017) 474 EPJC 77 (2017) 474 EPJC 77 (2017) 474 EPJC 81 (2021) 163 JHEP 04, 031 (2014) ATLAS-CONF-2021-03 JHEP 07 (2017) 107 PLB 816 (2021) 136190 PRD 94 (2016) 032011 PRD 100, 032007 (2019) PRL 123, 161801 (2019) PRD 96, 012007 (2017) LB 793 (92019) 469 PRD 93, 092004 (2016) arXiv:2004.10612

Closing remarks

The LHC proton-proton runs have produced exceptionally precise Standard Model results at 5, 7, 8 and 13 TeV

Ratification of the Standard Model of Particle Physics

=> Discovery of the Higgs Boson
=> Many precision measurements of ever increasing complexity and exploring smaller and smaller cross sections, without finding significant deviations

The LHC Run 3 is at full speed \rightarrow larger datasets \rightarrow increased precision
=> Potential for significant discoveries and deeper precision measurements

Standard Model measurements and direct searches will continue playing complementary roles in the search for new physics at LHC and at future colliders (ILC, FCC-ee, CEPC)

Extra Slides

Overview of Standard Model measurements in ATLAS

Standard Model Production Cross Section Measurements

Status: February 2022

Model	$\mathrm{E}_{\text {cm }}[\mathrm{TeV}]$	$\int \mathcal{L} \mathrm{dt}\left[\mathrm{fb}^{-1}\right]$	Measurement	
pp	8	50×10^{-8}	$\sigma=96.07 \pm 0.18 \pm 0.91 \mathrm{mb}$	
pp	7	8×10^{-8}	$\sigma=95.35 \pm 0.38 \pm 1.3 \mathrm{mb}$	
w	13	0.081	$\sigma=190.1 \pm 0.2 \pm 6.4 \mathrm{nb}$	
w	8	20.2	$\sigma=112.69 \pm 3.1 \mathrm{nb}$	
w	7	4.6	$\sigma=98.71 \pm 0.028 \pm 2.191 \mathrm{nb}$	
z	13	3.2	$\sigma=58.43 \pm 0.03 \pm 1.66 \mathrm{nb}$	
z	8	20.2	$\sigma=34.24 \pm 0.03 \pm 0.92 \mathrm{nb}$	
z	7	4.6	$\sigma=29.53 \pm 0.03 \pm 0.77 \mathrm{nb}$	
tit	13	36.1	$\sigma=826.4 \pm 3.6 \pm 19.6 \mathrm{pb}$	
$\mathrm{t}_{\mathbf{t}}$	8	20.2	$\sigma=242.9 \pm 1.7 \pm 8.6 \mathrm{pb}$	
tit	7	4.6	$\sigma=182.9 \pm 3.1 \pm 6.4 \mathrm{pb}$	
$\mathrm{t}_{\text {t-chan }}$	13	3.2	$\sigma=247 \pm 6 \pm 46 \mathrm{pb}$	
$\mathrm{t}_{\text {t-chan }}$	8	20.3	$\sigma=89.6 \pm 1.7+7.2-6.4 \mathrm{pb}$	
$\mathrm{t}_{\mathrm{t} \text {-chan }}$	7	4.6	$\sigma=68 \pm 2 \pm 8 \mathrm{pb}$	
Wt	13	3.2	$\sigma=94 \pm 10+28-23 \mathrm{pb}$	
Wt	8	20.3	$\sigma=23 \pm 1.3+3.4-3.7 \mathrm{pb}$	
Wt	7	2.0	$\sigma=16.8 \pm 2.9 \pm 3.9 \mathrm{pb}$	
H	13	139	$\sigma=55.5 \pm 3.2+2.4-2.2 \mathrm{pb}$	
H	8	20.3	$\sigma=27.7 \pm 3+2.3-1.9 \mathrm{pb}$	
H	7	4.5	$\sigma=22.1+6.7-5.3+3.3-2.7 \mathrm{pb}$	
H VBF, \|yyl < 2.5	13	139	$\sigma=4 \pm 0.3+0.3-0.4 \mathrm{pb}$	
H VBF	8	20.3	$\sigma=2.43+0.5-0.49+0.33-0.26 \mathrm{pb}$	
VH	8	20.3	$\sigma=1.03+0.37-0.36+0.26-0.21 \mathrm{pb}$	
WH, \|yH	< 2.5	13	139	$\sigma=1.56+0.2-0.21+0.16-0.18 \mathrm{pb}$
ZH, $\mathrm{lyH}_{\text {H }}$ < 2.5	13	139	$\sigma=0.7 \pm 0.13+0.1-0.12 \mathrm{pb}$	
$\mathrm{t}_{\mathbf{t}} \mathrm{H}$	13	139	$\sigma=560 \pm 80+70-80$ fb	
$\mathrm{t}_{\text {ter }}$	8	20.3	$\sigma=220 \pm 100 \pm 70$ fb	
ww	13	36.1	$\sigma=130.04 \pm 1.7 \pm 10.6 \mathrm{pb}$	
ww	8	20.3	$\sigma=68.2 \pm 1.2 \pm 4.6 \mathrm{pb}$	
ww	7	4.6	$\sigma=51.9 \pm 2 \pm 4.4 \mathrm{pb}$	
Wz	13	36.1	$\sigma=51 \pm 0.8 \pm 2.3 \mathrm{pb}$	
wz	8	20.3	$\sigma=24.3 \pm 0.6 \pm 0.9 \mathrm{pb}$	
wz	7	4.6	$\sigma=19+1.4-1.3 \pm 1 \mathrm{pb}$	
zz	13	36.1	$\sigma=17.3 \pm 0.6 \pm 0.8 \mathrm{pb}$	
zz	8	20.3	$\sigma=7.3 \pm 0.4+0.4-0.3 \mathrm{pb}$	
zz	7	4.6	$\sigma=6.7 \pm 0.7+0.5-0.4 \mathrm{pb}$	
$\mathrm{t}_{\text {s-chan }}$	8	20.3	$\sigma=4.8 \pm 0.8+1.6-1.3 \mathrm{pb}$	
tṫw	13	36.1	$\sigma=870 \pm 130 \pm 140$ fb	
titw	8	20.3	$\sigma=369+86-79 \pm 44 \mathrm{fb}$	
tīz	13	139	$\sigma=990 \pm 50 \pm 80$ fb	
tīz	8	20.3	$\sigma=176+52-48 \pm 24 \mathrm{fb}$	
www	13	139	$\sigma=0.82 \pm 0.01 \pm 0.08 \mathrm{pb}$	
wwz	13	79.8	$\sigma=0.55 \pm 0.14+0.15-0.13 \mathrm{pb}$	
$\underline{t} t \underline{t}$	13	139	$\sigma=24 \pm 4 \pm 5 \mathrm{fb}$	

Theory
$=99.55 \pm 2.14 \mathrm{mb}$ (COMPETE HPR1R2)
$\sigma=97.26 \pm 2.12 \mathrm{mb}$ (COMPETE HPR1R2) $\sigma=184.9+6-6.1 \mathrm{nb}$ (DYNNLO + CT14NNLO) $\sigma=110.919889503 \pm 3.7 \mathrm{nb}$ (DYNNLO + CT14NNLO) $\sigma=95.9 \pm 2.9 \mathrm{nb}$ (DYNNLO + CT14NNLO)
$=55.96+1.5-1.7 \mathrm{nb}$ (DYNNLO+CT14 NNLO) $=32.94+0.8-0.92 \mathrm{nb}$ (DYNNLO+CT14 NNLO) $=28.31+0.68-0.8 \mathrm{nb}$ (DYNNLO+CT14 NNLO) - $852+40-45 \mathrm{pb}$ (top++ NNLO+NNLL) = $252.9+13.3-14.5 \mathrm{pb}$ (op++NNLO+N $=177+10-11$ pb (op + (NLO+NNLL)
$27 \pm 10 \mathrm{pb}$ (NLONLL)
$=87.8+3.4-1.9 \mathrm{pb}($ NLO+NLL $)$
$=64.6+2.7-2 \mathrm{pb}$ (NLO+NLL)
$=22.4+1.5 \mathrm{pb}$ (NLO NLL) $=15.7+1.1 \mathrm{pb}($ NLO + NLL $)$
$=55.6 \pm 2.5 \mathrm{pb}$ (LHC-HXSWG YR4)
$\sigma=24.5+1.3-1.8 \mathrm{pb}$ (LHC-HXSWG YR4)
$=192+1-1.4 \mathrm{pb}$ (HC-HXSWG YR4)
$\sigma=3.51 \pm 0.07 \mathrm{pb}$ (LHC-HXSWG)
$\sigma=1.6 \pm 0.04 \mathrm{pb}$ (LHC-HXSWG YR4)
$\sigma=1.6 \pm 0.04 \mathrm{pb}$ (LHC-HXSWG YR4)
$\sigma=1.12 \pm 0.03 \mathrm{pb}$ (NNLO(QCD)+NLO(EW)) $\sigma=1.203 \pm 0.024 \mathrm{pb}$ (Powheg Box NLO(QCD) $\sigma=0.795 \pm 0.03 \mathrm{pb}$ (Powheg Box NLO(QCD)) $\sigma=580 \pm 50 \mathrm{fb}$ (LHCHXSWG NLO QCD + NLO EW) $\sigma=133+8-13 \mathrm{fb}$ (LHCHXSWG NLO QCD + NLO EW) $\sigma=128.4+3.2-2.9 \mathrm{pb}$ (NNLO) $=65+1.2-1.1 \mathrm{pb}$ (NNLO) $\sigma=49.04+1.03-0.88 \mathrm{pb}$ (NNLO) $=49.1+1.1-1 \mathrm{pb}$ (MATRIX (NNLO)) $=23.92 \pm 0.4 \mathrm{pb}$ (MATRIX (NNLO))
$=19.34+0.3-0.4 \mathrm{pb}$ (MATRIX (NNLO))
$=16.9+0.6-0.5 \mathrm{pb}$ (Matrix (NNLO) \& Sherpa (NLO) $\sigma=8.284+0.249-0.191 \mathrm{pb}$ (NNLO) $=6.735+0.195-0.155 \mathrm{pb}$ (NNLO) $=5.61 \pm 0.22 \mathrm{pb}$ (NLO+NNL)
$\sigma=600 \pm 72 \mathrm{fb}$ (Madgraph5 + aMCNLO)
$\sigma=232 \pm 32 \mathrm{fb}$ (MCFM)
$\sigma=840 \pm 90$ fb (Madgraph5 + aMCNLO)
$\sigma=215 \pm 30$ fb (HELAC-NLO)
$\sigma=0.511 \pm 0.018 \mathrm{pb}$ (NLO QCD
$\sigma=0.358 \pm 0.036 \mathrm{pb}$ (Sherpa 2.2.2)
$=12 \pm 2.4 \mathrm{fb}$ (NLO QCD +EW)

ATLAS Preliminary $\sqrt{s}=5,7,8,13 \mathrm{TeV}$

Reference

PLB 761 (2016) 158
Nucl. Phys. B, 486-548 (2014)
PLB 759 (2016) 601
EPJC 79 (2019) 760
EPJC 77 (2017) 367
JHEP 02 (2017)
JHEP 02 (2017) 117
EPJC 80 (2020) 528
EPJC 74 (2014) 3109
EPJC 74 (2014) 3109
JHEP 04 (2017) 086
HEPC 77 (2017) 531
PRD 90,112006 (2014)
JHEP 01 (2018) 63
HEP 01 (264 (201
PLB 716, 142-159 (2012)
ATLAS-CONF-2022-002
EPJC 76 (2016) 6
EPJC 76 (2016) 6
EPJC 76 (2016) 6
ATLAS-CONF-2021-053
ETLAS-CONF-202 76 (2016) 6
EPJC 76 (2016) 6
ATLAS-CONF-2021-053
ATLAS-CONF-CONF-2021-053
ATLAS-CONF-2021-053
PLB 784 (2018) 173
EPJC 79 (2019) 884
PLB 763, 114 (2016)
Phys. Rev. D 87 (2013) 112001, arXiv:1408.5243 EPJC 79 (2019) 535
PRD 93, 092004 (2016)
EPJC 72 (2012) 2173
PRD 97 (2018) 032005
JHEP 03, 128 (2013), PLB 735 (2014) 311
LB 756, 228-246 (2016)
PRD 99, 072009 (2019)
JHEP 11, 172 (2015)
Eur. Phys. J. C 81 (2021) 737
JHEP 11, 172 (2015)
arXiv:2201. 13045
PLB 798 (2019) 1349
JHEP 11 (2021) 118

Overview of CMS cross section results

Overview of CMS X+jets cross section results

Determination of the strong coupling constant from CMS

Cambridge/Aachen algorithm and Lund plane

Cambridge/Aachen primary declustering tree of a jet \rightarrow the emissions are angular ordered

Cross checks of W mass measurement

Comparison of the PLH fit results of the individual measurement categories as well as the combination of all between the PDF set CT10 and CT18

Cross checks of W mass measurement

Results are determined using a PLH approach and in comparison with a x2-minimization approach using statistical uncertainties only

