

Phenomenology of low-scale seesaw with flavour and CP symmetries

Claudia Hagedorn IFIC - UV/CSIC

Lepton Photon 2023, Melbourne, 17.-21.07.2023

In collaboration with M. Drewes, Y. Georis, J. Klaric

- Standard Model (SM) is very successful. Nevertheless, several phenomena are not explained within SM.
 - Replication of fermion generations
 - Fermion masses
 - Quark and lepton mixing
 - Baryon asymmetry of the Universe (BAU)

$$Y_B = \frac{n_B - n_{\overline{B}}}{s} \Big|_0 = 8.75 \times 10^{-11}$$

Planck ('18)

C. Hagedorn

- Standard Model (SM) is very successful. Nevertheless, several phenomena are not explained within SM.
 - Replication of fermion generations
 - Fermion masses
 - Quark and lepton mixing
 - Baryon asymmetry of the Universe (BAU)
- Additionally, beyond SM (BSM) theories can have a rich phenomenology.
 - Processes forbidden/highly suppressed in SM can be in reach

Current experimental limit

$$BR(\mu \to e\gamma) < 4.2 \cdot 10^{-13}$$

MEG at PSI ('16)

Lepton Photon 2023

- Standard Model (SM) is very successful. Nevertheless, several phenomena are not explained within SM.
 - Replication of fermion generations
 - Fermion masses
 - Quark and lepton mixing
 - Baryon asymmetry of the Universe (BAU)
- Additionally, beyond SM (BSM) theories can have a rich phenomenology.
 - Processes forbidden/highly suppressed in SM can be in reach
 - Flavour and CP violation needs to be kept under control
 - Possible correlations among different signals

Flavour and CP symmetry

Low-scale type I seesaw

- Standard Model (SM) is very successful. Nevertheless, several phenomena are not explained within SM.
 - Replication of fermion generations
 - Fermion masses
 - Quark and lepton mixing
 - Baryon asymmetry of the Universe (BAU)
- Additionally, beyond SM (BSM) theories can have a rich phenomenology.
 - Processes forbidden/highly suppressed in SM can be in reach
 - Flavour and CP violation needs to be kept under control
 - Possible correlations among different signals

Flavour and CP symmetry

Flavour symmetries $\Delta(3 n^2)$ and $\Delta(6 n^2)$

- Have 3-dim irrep(s)
- Can also offer 1-dim irreps and 2-dim irreps ^E
- Are subgroups of SU(3)
- Examples: permutation groups A₄ and S₄

CP as further symmetry

Luhn/Nasri/Ramond ('07) Escobar/Luhn ('08)

Grimus/Rebelo ('95),

Ecker/Grimus/Neufeld ('84,'87,'88)

Lepton Photon 2023

• Motivation:

For more than one generation of certain particle species, define CP that also acts on generations of particles,

•g.
$$\Phi_i(x) \rightarrow X_{ij} \Phi_j^{\dagger}(x_P)$$
 with $(x_P)_{\mu} = x^{\mu}$

with

e

 $XX^{\dagger} = XX^{\star} = 1$

Feruglio/CH/Ziegler ('12)

Harrison/Scott ('02), Grimus/Lavoura ('03)

Holthausen/Lindner/Schmidt ('12), Chen et al. ('14)

Flavour and CP symmetry

Breaking of symmetries

Feruglio/CH/Ziegler ('12)

Case 1)Case 2)Case 3 a)Case 3 b.1)nLepton Photon 2023

Lepton mixing

Case 1)

• Leads to lepton mixing angles

$$\sin^2 \theta_{13} = \frac{2}{3} \, \sin^2 \theta \quad , \quad \sin^2 \theta_{12} = \frac{1}{2 + \cos 2\theta} \quad , \quad \sin^2 \theta_{23} = \frac{1}{2} \, \left(1 + \frac{\sqrt{3} \sin 2\theta}{2 + \cos 2\theta} \right)$$

Result of fit

 $\sin^2 \theta_{13} \approx 0.0220 \ (0.0222) \ , \ \sin^2 \theta_{12} \approx 0.341 \ , \ \sin^2 \theta_{23} \approx 0.605 \ (0.606)$ for $\theta_L \approx 0.183 \ (0.184)$ assuming light neutrino masses with NO (IO). s fixed by CP symmetry

• Predictions for CP phases

$$\left|\sin \alpha\right| = \left|\sin \left(\frac{6\pi s}{n}\right)\right|$$
, $\sin \beta = 0$, $\sin \delta = 0$

NuFIT 5.2 ('22) 286⁺²⁷₋₃₂10, IO, 3 σ $192 \rightarrow 360$ 197^{+42}_{-25} $\delta_{\mathrm{CP}}/^{\circ}$ $108 \rightarrow 404$ NO, 3 σ NO, 1 σ C. Hagedorn Lepton Photon 2023

Consider a scenario of type I seesaw with 3 RH neutrinos,
 i.e. 3 generations of LH doublets and
 3 generations of gauge singlets ν_{Ri}

$$\mathcal{L} \supset \mathrm{i}\,\overline{\nu_R}\,\partial\!\!\!\!/\,\nu_R - \frac{1}{2}\overline{\nu_R^c}\,M_R\,\nu_R - \overline{l_L}\,Y_D\,\varepsilon H^*\,\nu_R + \mathrm{h.c.}$$

• Light neutrino masses

$$m_{\nu} = -m_D M_R^{-1} m_D^T$$
 with $m_D = Y_D \langle H \rangle$

Minkowski ('77), Glashow ('80), Gell-Mann/Ramond/Slansky ('79), Mohapatra/Senjanovic ('80), Yanagida ('80), Schechter/Valle ('80)

C. Hagedorn

• We take

$$\alpha_R \sim 1 \qquad \qquad l_{L\alpha} \sim 3 \ , \nu_{Ri} \sim 3'$$

see also Dev/CH/Molinaro ('18); Chauhan/Dev ('22) Lepton Photon 2023

• We take

$$\alpha_R \sim 1$$

$$l_{L\alpha} \sim 3 \nu_{Ri} \sim 3'$$

irreducible, faithful, complex

Reason: Fully explore the predictive power of flavour and CP symmetry CH/Meroni/Molinaro ('14)

see also Dev/CH/Molinaro ('18); Chauhan/Dev ('22) Lepton Photon 2023

• We take

$$\alpha_R \sim 1 \qquad \qquad l_{L\alpha} \sim 3 \ , \nu_{Ri} \sim 3'$$

$$\left(egin{array}{ccc} m_e & 0 & 0 \ 0 & m_\mu & 0 \ 0 & 0 & m_ au \end{array}
ight)$$

residual symmetry G_e

C. Hagedorn

• We take

$$\alpha_R \sim 1$$

$$l_{L\alpha}\sim 3\ ,\nu_{Ri}\sim 3'$$

irreducible, in general unfaithful, real

Reason: (flavour-universal) mass term for ν_{Ri} w/o breaking flavour and CP symmetry, breaking encoded in Y_D

see also Dev/CH/Molinaro ('18); Chauhan/Dev ('22) Lepton Photon 2023

• We take

$$\alpha_R \sim 1 \qquad \qquad l_{L\alpha} \sim 3 \ , \nu_{Ri} \sim 3'$$

• We get
Neutral lepton sector residual symmetry
$$G_{\nu}$$

 $\mathcal{L} \supset (i \overline{\nu_R} \not \partial \nu_R - \frac{1}{2} \overline{\nu_R^c} M_R \nu_R + \overline{l_L} Y_D \varepsilon H^* \nu_R + h.c.$

No symmetry breaking

Symmetry breaking

$$M_R = M_R^0 = M \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right)$$

 $Y_D = \Omega(\mathbf{3}) R_{ij}(\theta_L) \operatorname{diag}(y_1, y_2, y_3) P_{kl}^{ij} R_{kl}(-\theta_R) \Omega(\mathbf{3}')^{\dagger}$

RH neutrino masses are degenerate C. Hagedorn

Neutral lepton sector

$$Y_D = \Omega(\mathbf{3}) R_{ij}(\theta_L) \operatorname{diag}(y_1, y_2, y_3) P_{kl}^{ij} R_{kl} (-\theta_R) \Omega(\mathbf{3}')^{\dagger}$$

In total five free real parameters corresponding to three light neutrino masses, one free parameter for lepton mixing and one free parameter related to RH neutrinos

Possible small symmetry breaking for RH neutrino masses

$$\delta M_R = \kappa M \left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{array} \right)$$

$$M_1 = M (1 + 2\kappa)$$
 and $M_2 = M_3 = M (1 - \kappa)$

Often needed for generating correct amount of BAU.

C. Hagedorn

Case 1)

C. Hagedorn

Case 1)

Majorana phase α fulfils $|\sin \alpha| = |\sin(\frac{6\pi s}{r})|$

 $\left[\text{Remember}\quad \sin\left(\frac{6\,\pi\,s}{n}\right) = 2\,\cos\left(\frac{3\,\pi\,s}{n}\right)\,\sin\left(\frac{3\,\pi\,s}{n}\right)\right]$

C. Hagedorn

Leptogenesis Light neutrino masses for strong NO

Case 1)

Values of θ_R so close to $\frac{\pi}{\Lambda}$ are **not** (always) a tuning, but related to enhanced residual symmetry, i.e. check $Y_D^{\dagger}Y_D$ Lepton Photon 2023

Case 1)

C. Hagedorn

Case 1)

Lepton Photon 2023

Case 1)

C. Hagedorn

Case 1)

C. Hagedorn

Summary and Outlook

- Low-scale seesaw mechanism with flavour and CP symmetry has a rich phenomenology
 - lepton mixing
 - leptogenesis
 - heavy neutrino searches and testability

- More signals can be explored
- More options/variants of low-scale seesaw can be considered
- Embedding in larger framework can be interesting

•

Many thanks for your attention!

Lepton Photon 2023

Back-up slides

C. Hagedorn

Lepton mixing Case 2)

C. Hagedorn

Lepton mixing Case 2)

u	u = -1	u = 0	u = +1
$ heta_L$	0.146	0.184	0.146
	(0.148)		(0.148)
$\sin^2 \theta_{12}$	0.341	0.341	0.341
$\sin^2 \theta_{13}$	0.0222	0.0222	0.0222
	(0.0224)	(0.0224)	(0.0224)
$\sin^2 \theta_{23}$	0.437	0.5	0.563
$\Delta\chi^2$	9.25	10.8	8.27
	(11.2)	(12.5)	(8.62)

several choices for *v* admitted

Lepton Photon 2023

Case 1)

C. Hagedorn

Way towards capturing main dependencies analytically

- CP-violating combinations
- washout parameter

CP-violating combinations:see for related work Hernandez et al. ('15)Perturbatively solve quantum kinetic equations in H_N and Γ Leading term for lepton asymmetries

$$\operatorname{Tr}\left[\tilde{\Gamma}_{\alpha}(\bar{\rho}_{N}-\rho_{N})\right]\propto\operatorname{Tr}\left(\tilde{\Gamma}_{\alpha}\left[H_{N},\Gamma\right]\right)$$
 with $\alpha=e,\mu,\tau.$

Three types of CP-violating combinations are found

$$C_{\text{LFV},\alpha} = i \operatorname{Tr} \left(\begin{bmatrix} \hat{M}_{R}^{2}, \hat{Y}_{D}^{\dagger} \hat{Y}_{D} \end{bmatrix} \hat{Y}_{D}^{\dagger} P_{\alpha} \hat{Y}_{D} \right),$$

$$C_{\text{LNV},\alpha} = i \operatorname{Tr} \left(\begin{bmatrix} \hat{M}_{R}^{2}, \hat{Y}_{D}^{\dagger} \hat{Y}_{D} \end{bmatrix} \hat{Y}_{D}^{T} P_{\alpha} \hat{Y}_{D}^{*} \right),$$

$$C_{\text{DEG},\alpha} = i \operatorname{Tr} \left(\begin{bmatrix} \hat{Y}_{D}^{T} \hat{Y}_{D}^{*}, \hat{Y}_{D}^{\dagger} \hat{Y}_{D} \end{bmatrix} \hat{Y}_{D}^{T} P_{\alpha} \hat{Y}_{D}^{*} \right)$$

Lepton Photon 2023

$$\begin{split} C_{\mathrm{LFV},\alpha} &= i \operatorname{Tr} \left(\left[\hat{M}_{R}^{2}, \hat{Y}_{D}^{\dagger} \, \hat{Y}_{D} \right] \, \hat{Y}_{D}^{\dagger} \, P_{\alpha} \, \hat{Y}_{D} \right), \\ C_{\mathrm{LNV},\alpha} &= i \operatorname{Tr} \left(\left[\hat{M}_{R}^{2}, \hat{Y}_{D}^{\dagger} \, \hat{Y}_{D} \right] \, \hat{Y}_{D}^{T} \, P_{\alpha} \, \hat{Y}_{D}^{*} \right), \\ C_{\mathrm{DEG},\alpha} &= i \operatorname{Tr} \left(\left[\hat{Y}_{D}^{T} \, \hat{Y}_{D}^{*}, \hat{Y}_{D}^{\dagger} \, \hat{Y}_{D} \right] \, \hat{Y}_{D}^{T} \, P_{\alpha} \, \hat{Y}_{D}^{*} \right) \end{split}$$

with

$$P_e = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} , P_{\mu} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} , P_{\tau} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

and in mass basis of heavy states, i.e.

$$\hat{Y}_D = Y_D U_R$$

$$U_R = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & 1 & i \\ 0 & 1 & -i \end{pmatrix}$$

C. Hagedorn

$$C_{
m LFV,lpha} ~=~ i\,{
m Tr}\Big(\left[\hat{M}_R^2,\hat{Y}_D^\dagger\,\hat{Y}_D
ight]\,\hat{Y}_D^\dagger\,P_lpha\,\hat{Y}_D\Big)$$

Note the following

- Dominant combination when *N_i* are in relativistic regime
- Only leads to lepton flavour asymmetry, since

$$\sum_{lpha} C_{
m LFV,lpha} = 0.$$

• Crucially depends on a flavoured washout

$$C_{
m LFV,lpha} ~=~ i\,{
m Tr}\Big(\left[\hat{M}_R^2,\hat{Y}_D^\dagger\,\hat{Y}_D
ight]\,\hat{Y}_D^\dagger\,P_lpha\,\hat{Y}_D\Big)$$

Note the following

- Dominant combination when N_i are in relativistic regime
- Only leads to lepton flavour asymmetry, since

$$\sum_{lpha} C_{
m LFV,lpha} = 0.$$

Crucially depends on a flavoured washout

$$C_{\mathrm{LNV},lpha} \;\; = \;\; i \, \mathrm{Tr} \Big(\left[\hat{M}_R^2, \hat{Y}_D^\dagger \, \hat{Y}_D
ight] \, \hat{Y}_D^T \, P_lpha \, \hat{Y}_D^* \Big)$$

Note the following

- Sizeable for intermediate / larger masses of N_i
- Directly violates lepton number with

$$C_{\rm LNV} = \sum_{\alpha} C_{\rm LNV,\alpha} \neq 0$$

compare to flavoured decay asymmetries $\epsilon_{i\alpha}$ see Dev et al. ('17)C. HagedornLepton Photon 2023

$$C_{\text{DEG},\alpha} = i \operatorname{Tr} \left(\left[\hat{Y}_D^T \, \hat{Y}_D^*, \hat{Y}_D^\dagger \, \hat{Y}_D \right] \, \hat{Y}_D^T \, P_\alpha \, \hat{Y}_D^* \right)$$

Note the following

- Only this CP-violating combination could be non-zero for zero κ and λ
- Only possible at intermediate temperatures $M/T \sim 1$
- Only leads to lepton flavour asymmetry, since

 $\sum_{\alpha} C_{\text{DEG},\alpha} = 0.$

Furthermore, for the limit $\lambda \ll \kappa \lesssim 1$ consider subset of two mass-degenerate states. Define $(\hat{Y}_{(23)})_{\alpha i} = (\hat{Y}_D)_{\alpha i}$ for $i \in \{2, 3\}$

For $\lambda = 0$ we only need

$$C_{\text{DEG},\alpha}^{(23)} = i \operatorname{Tr} \left(\left[\hat{Y}_{(23)}^T \, \hat{Y}_{(23)}^*, \hat{Y}_{(23)}^\dagger \, \hat{Y}_{(23)} \right] \, \hat{Y}_{(23)}^T \, P_\alpha \, \hat{Y}_{(23)}^* \right)$$

Clearly,

$$\sum_{\alpha} C^{(23)}_{\mathrm{DEG},\alpha} = 0.$$

C. Hagedorn

Way towards capturing main dependencies analytically

- CP-violating combinations
- washout parameter

Flavoured washout parameter:

$$f_{\alpha} = \frac{(\hat{Y}_D \hat{Y}_D^{\dagger})_{\alpha \alpha}}{\operatorname{Tr} \left(\hat{Y}_D \hat{Y}_D^{\dagger} \right)}$$

C. Hagedorn

Case 1)

Overview over results

Type of mixing pattern	BAU non-zero	BAU non-zero	Large total mixing
	for $\kappa = 0$?	for large κ ?	angle U^2 possible?
Case 1)	No, see Fig. 4	Yes, see Fig. 4	Yes, for $\cos 2\theta_R \approx 0$
			see Fig. 9
Case 2), t even	No, see Fig. 12	No, see Fig. 12	No
Case 2), t odd	Yes, for $m_0 \neq 0$	Yes, see Fig. 16	Yes, for $\sin 2\theta_R \approx 0$
	see Fig. 17, plot (a)		see Fig. 19
Case 3 b.1), m and s even	No, see Fig. 20	No, see Fig. 20	No
Case 3 b.1), m even, s odd	Yes, see Fig. 22	No, see Fig. 22	Yes, for $\cos 2\theta_R \approx 0$
	except for strong IO		see Fig. 25
Case 3 b.1), m odd, s even	Yes, see Fig. 26	Yes, see Fig. 26	Yes, for $\cos 2 \overline{\theta_R} \approx 0$
	except for strong IO		
Case 3 b.1), m and s odd	No	No	No

C. Hagedorn

Case 1)

C. Hagedorn

Case 1)

For θ_R close to $\frac{\pi}{4}$ active-sterile mixing U_{α}^2 can be large and approximately one finds

$$\frac{U_{\alpha}^2}{U^2} \approx \begin{cases} \frac{2}{3} \sin^2 \theta_{L,\alpha} & \text{for NO,} \\ \frac{2}{3} \cos^2 \theta_{L,\alpha} & \text{for IO.} \end{cases}$$

with

$$\theta_{L,\alpha} = \theta_L + \rho_\alpha \frac{4\pi}{3}$$
 $\rho_e = 0, \ \rho_\mu = +1 \text{ and } \rho_\tau = -1.$

Note this result does not depend on the parameter *s*. However, it depends on the lightest neutrino mass m_0 , since for $m_0 \neq 0$ the angle θ_L has to be read as $\tilde{\theta}_L$ with dependence on the light neutrino mass spectrum and the angle θ_R .

C. Hagedorn

Case 1)

C. Hagedorn

Case 1)

C. Hagedorn