

MiniBooNE Low Energy Excess

Erin Yandel (UCSB)
On behalf of the MicroBooNE Collaboration
Lepton Photon 2023

July 19, 2023

Low Energy Excess Anomalies

- In 1995, LSND saw an excess of $\bar{\nu}_{\mu} \to \bar{\nu}_{e}$ oscillation events at energies ~50 MeV MiniBooNE was built at a similar L/E as LSND to test this anomaly
- With data collected from 2002 to 2019, sees a 4.8 σ excess of v_a candidate events
 - energies of about 200-800 MeV
 - forward-going angles

Phys. Rev. Lett. 75, 2650 (1995)

Testing the LEE with LArTPCs

- However, MiniBooNE, as a cherenkov detector, can not distinguish between e^- and γ
- A Liquid Argon Time Projection Chamber (LArTPC) **can** distinguish these, allowing us to probe into the nature of the excess.

MicroBooNE

- MicroBooNE is a surface-level, 85 tonne (10×2.5×2.5 m³)
 LArTPC neutrino experiment on Fermilab's Booster Neutrino Beamline (BNB)
- Scintillation light (collected by 32 PMTS) and ionization charge on 3 wire planes allows for 3D reconstruction and detailed particle ID
- Collected data 2015 2021
- Primary design goal is to understand this LEE anomaly seen by MiniBooNE

Possible Anomaly Channels

First series of results (½ the MicroBooNE data set)

1e0p	1e1p	1eNp	1eX	1γ0p	1γ1p	1γΧ
e-	P e-	p e-	X e-	Y	P	X

First Results

- Used about half of MicroBooNE's collected dataset
- 3 v_eCC searches for four event classes (1e0p, 1e1p, 1eNp, 1eX)
 - Rejects electrons as LEE explanation at > 97% CL
 - One single photon search for NC Δ → Nγ (1γ0p, 1γ1p)
 - \circ Rules out photons from NC Δ → Nγ as the cause of the LEE at 94.8% C.L.

Phys. Rev. Lett. 128, 111801 (2022)

3+1 Oscillations

 Use the data from the first results to perform a 3+1 sterile neutrino oscillation analysis

Phys. Rev. Lett. 130, 011801 (2023)

- simultaneously considering appearance and disappearance effects
- saw no evidence for 3+1 sterile neutrino oscillations
- For $v_{\mu} \rightarrow v_{e}$, excludes parts of the MiniBooNE and LSND allowed regions
- \bullet For $\nu_{\rm e} \rightarrow \nu_{\rm e}$, excludes part of the allowed regions from gallium experiments

Improving the Sensitivity: BNB+Numi

- In addition to the on-axis BNB beam, MicroBooNE sees the NuMI beam at an off-axis angle of 8°
 - more than doubles statistics
- Intrinsic flux and v_{μ} to v_{e} ratio in NuMI is quite different from the BNB
 - addition of NuMI events helps to break the degeneracy of the appearance and disappearance effects

More Photon Channels: Coherent Photon

- Coherent-like single-photon production search
- building on the previous 1γ 0p result
- increased sensitivity to "coherent-like" events
 - forward-going photons
 - no visible hadronic activity
 - improvements in proton identification for better event selection
 - closely follows the expected LEE topology
- results coming soon!

Inclusive Photon Search

- Only current photon result is the NC $\Delta \rightarrow N\gamma$ (1 γ 0p, 1 γ 1p) channel
- Cover the remaining unexplored single photon phase-space
- Inclusive single photon $(1\gamma X)$
 - more general "single photon-like" final states
 - one photon or highly overlapping di-photon or e⁺e⁻
 - no dependence on model or requirement on hadronic activity
- results coming soon!

Exploring Further Channels

First series of results (½ the MicroBooNE data set)

1e0p	1e1p	1eNp	1eX	1γ0p	1γ1p	1γΧ	e ⁺ e ⁻ + nothing	e⁺e ⁻ X
e-	p e-	p	X e-	γ	PY	×γ	Ó Ø*	х е ⁻

Other BSM Explanations

- A number of proposed BSM scenarios beyond sterile neutrinos
- Overlapping e⁺e⁻ final states will mimic a single shower topology
- Models include dark neutrinos, heavy neutral leptons, new scalars, dark matter, and many more

The SBN Program

- MicroBooNE is part of the Short-Baseline Neutrino (SBN)
 Program at Fermilab
 - 3 LArTPC detectors along the BNB
- In addition to one detector searches, a number of multi-detector oscillation analyses can be done once the near detector (SBND) turns on next year

Summary

- The MicroBooNE experiment was designed to test the nature of the excess of single electromagnetic shower events seen by MiniBooNE
- The current set of results from MicroBooNE disfavor electron and NC $\Delta \to N\gamma$ photon background as an explanation for the MiniBooNE LEE
- Additionally, we have performed a sterile neutrino oscillation fit and expect to improve this fit in the near future with the inclusion of data from the NuMI beam
- A number of new MicroBooNE LEE analyses, including searches for new models and more general event topologies, are underway, with many results expected soon
- The final detector in Fermilab's SBN Program will turn on next year, allowing for more precise, multi-detector LEE and oscillation analyses

Thank You!

Backup

Sterile Neutrinos: LSND Appearance Signal

- Liquid Scintillator Neutrino Detector at Los Alamos National Laboratory
- μ^+ decay-at-rest experiment looking at $\bar{v}_\mu \longrightarrow \bar{v}_e$ oscillation events
- 30m baseline, 0.8 GeV neutrino beam energy
- Excess of 87.9 \pm 22.4 \pm 6.0 events consistent with \bar{v}_e + p \rightarrow e⁺ + n above expected background
- If interpreted in a 2 neutrino oscillation model then most favored oscillation region is a band in ∆m² in the ~eV² range
- If excess is truly electron anti-neutrinos from oscillation then could be evidence of a 3+N sterile neutrino theory

[C. Athanassopoulos et al., Phys. Rev. Lett. 75, 2650 (1995); 81,1774(1998); A.Aguilar et al., Phys. Rev. D64, 112007(2001)]

Sterile Neutrinos: MiniBooNE Low Energy Excess

- Spherical Mineral Oil (CH2) Cherenkov Detector at Fermilab
- Booster Neutrino Beam provides (mostly muon) neutrinos
- Total electron neutrino + anti-neutrino CCQE excess of 460.5 ±
 99.0 events with respect to expectation (2018 result)
 - \sim 4.7 σ excess
 - 12.84 × 10²⁰ POT in neutrino mode
 - 11.27 × 10²⁰ POT in anti-neutrino mode
- Neutrino and anti-neutrino fits consistent with LSND allowed

regions

Other Short-Baseline Anomalies

- BEST and other gallium experiments see a deficit that could be explained by $v_{\mu} \rightarrow v_{e}$ oscillations
- Neutrino-4 sees an oscillation as a function of distance/energy that could be explained by $v_e \rightarrow v_{u.\tau.s}$ oscillations

BEST
Phys. Rev. C 105, 065502 (2022)

Neutrino-4

Phys. Rev. D 104, 032003 (2021)

3+1 Global Fit

J. High Energ. Phys. 2018, 10 (2018)

MicroBooNE

- 3 planes of wires (vertical, +60°,
 -60°) with 3mm spacing
- 32 PMTs collect light from flash at time of interaction
- Charged particle trajectory
 reconstructed using the known
 positions of the anode plane
 wires and the recorded drift time
 of the ionization

3+1 Neutrino Oscillations

 With three active neutrinos and one sterile neutrino, the PMNS matrix can be extended to 4x4 using the following parameterization:

$$U_{PMNS} = R_{34}(\theta_{34}, \delta_{34}) R_{24}(\theta_{24}, \delta_{24}) R_{24}(\theta_{24}, 0) R_{23}(\theta_{23}, 0) R_{13}(\theta_{13}, \delta_{13}) R_{12}(\theta_{12}, 0)$$

 For short baselines, only the sterile neutrino oscillation will be relevant, and the survival probability is:

$$P_{\alpha \to \beta} = \delta_{\alpha\beta} + (-1)^{\delta_{\alpha\beta}} \cdot \sin^2(2\theta_{\alpha\beta}) \cdot \sin^2\left(1.267 \frac{\text{GeV}}{\text{eV}^2 \text{km}} \frac{\Delta m_{41}^2 L}{E}\right)$$

 v_e disappearance: $\sin^2 2\theta_{ee} = \sin^2 2\theta_{14}$

 ν_{μ} disappearance: $\sin^2 2\theta_{\mu\mu} = 4\cos^2 \theta_{14}\sin^2 \theta_{24}(1-\cos^2 \theta_{14}\sin^2 \theta_{24})$

 ν_e appearance: $\sin^2 2\theta_{\mu e} = \sin^2 2\theta_{14} \sin^2 \theta_{24}$

v Appearance/Disappearance Cancellation

$$\begin{split} N_{\nu_e \text{ at detector}} &= N_{\nu_e \text{ in beam}} \cdot P_{\nu_e \to \nu_e} + N_{\nu_\mu \text{ in beam}} \cdot P_{\nu_\mu \to \nu_e} \\ &= N_{\nu_e \text{ in beam}} \left[1 + \left(\frac{\sin^2 \theta_{24}}{R_{\nu_e / \nu_\mu}} - 1 \right) \cdot \sin^2 2\theta_{14} \cdot \sin^2 \left(1.267 \frac{\text{eV}^2 \text{km}}{\text{GeV}} \frac{\Delta m_{41}^2 L}{E} \right) \right] \end{split}$$

• The number of ν_e at MicroBooNE is mostly unaffected by oscillations when $\sin^2\theta_{24}$ approaches R_{ν_e/ν_μ} , the ratio of intrinsic ν_e to ν_μ in the beam

BNB R_{ν_e/ν_μ} : ~0.005 NuMl R_{ν_e/ν_μ} : ~0.04

