

Latest Results From Daya Bay With Full Dataset

Zhiyuan Chen Institute of High Energy Physics On behalf of the Daya Bay Collaboration

31st Lepton Photon Conference, Melbourne, 19th July 2023

Measuring θ_{13} with Reactor $\overline{\nu}_e$ at Daya Bay

Daya Da

• Survival probability:

$$P(\overline{\nu}_{e} \rightarrow \overline{\nu}_{e}) = 1 - \sin^{2} 2\theta_{13} \left(\cos^{2} \theta_{12} \sin^{2} \Delta_{31} + \sin^{2} \theta_{12} \sin^{2} \Delta_{32} \right) - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21}$$
$$\approx 1 - \sin^{2} 2\theta_{13} \sin^{2} \Delta_{ee} - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \Delta_{21}$$
$$\Delta_{ij} = \Delta m_{ij}^{2} \frac{L}{4E}$$

Reduce systematic issues by performing relative measurement with Far/Near ratio

Antineutrino Detectors (ADs)

- 20 tons of 0.1% Gd-loaded liquid scintillator (GdLS) as target
- 21 tons of liquid scintillator (LS) as gamma catcher
- 40 tons of mineral oil (MO) as shielding

- $\overline{\nu}_{e} + p \rightarrow e^{+} + n$ $\downarrow \stackrel{\sim 180 \ \mu s}{\rightarrow} + p \rightarrow d + \gamma (2.2 \ \text{MeV})$ $\downarrow + \text{Gd} \rightarrow \text{Gd}^{*}$ $\stackrel{\sim 30 \ \mu s}{\text{for } 0.1\% \ \text{Gd}} \qquad \downarrow \text{Gd} + \gamma \text{'s } (\sim 8 \ \text{MeV})$
- Detect inverse β -decay reaction (IBD)

- Water pools provide shielding against cosmic-ray muons, secondary neutrons
- Providing a muon veto system via detection of Cherenkov light

Brief History of Onsite Operation

- Detector commissioning on 15 August 2011
- Collection of physics data began on 24 Dec 2011
- Collection of physics data ended on 12 Dec 2020
- Decommissioning: 12 Dec 2020 31 Aug 2021

Oscillation Parameters: Improvements

• Statistics of nGd data:

Year	Calendar days	EH1	EH2	EH3	Total IBD's
2018 (PRL 121, 241805)	1958	1,794,417	1,673,907	495,421	3,963,745
2023	3158	2,236,810	2,544,894	764,414	5,546,118

- Analysis:
 - > Energy calibration

See more details in backup

- Electronics non-linearity calibrated at the channel-by-channel level
- Improved non-uniformity correction
- > New correlated background after 2017
 - Remove additional very rare PMT flashers
 - Suppress and identify untagged muon events
- Correlated background
 - New approach for determining the ⁹Li/⁸He background

Selection of IBD Candidates

- Remove flashing PMT events
- Veto muon events
- Require 0.7 MeV $< E_{\text{prompt}} < 12$ MeV, 6 MeV $< E_{\text{delayed}} < 12$ MeV
- Neutron capture time: $1 \ \mu s < \Delta t < 200 \ \mu s$
- Multiplicity cut: select time-isolated energy pairs

	Efficiency	Correlated	Uncorrelated
Target protons	-	0.92%	0.03%
Flasher cut	99.98%	0.01%	0.01%
Delayed energy cut	92.7%	0.97%	0.08%
Prompt energy cut	99.8%	0.10%	0.01%
Multiplicity cut		0.02%	0.01%
Capture time cut	98.7%	0.12%	0.01%
Gd capture fraction	84.2%	0.95%	0.10%
Spill-in	104.9%	1.00%	0.02%
Livetime	-	0.002%	0.01%
Combined	80.6%	1.93%	0.13%

Detection efficiencies

Overview of Background

- Uncorrelated background
 - Accidental: uncorrelated pairs
- Correlated background
 - ➢ Fast neutron
 - produced outside of the AD but enters the active volume of the AD
 - ▹ ⁹Li/⁸He
 - spallation product produced by cosmic-ray muons inside the AD
 - > 241Am- 13 C
 - neutron calibration source resides inside the ACU
 - > $^{13}C(\alpha,n)^{16}O$
 - α from decay of natural radioactive isotope in the liquid scintillator
 - Residual PMT flasher
 - > Muon-x

- new background

Analysis of New Background

Residual PMT flashers

- Located near the top of some ADs
- Removed by cutting on Kurtosis and time_PSD_local_RMS
- After rejecting residual flashers,
 - Negligible contamination in the IBD sample
 - Retain 99.997% of the IBD candidates

Muon-x background

- Gradual failure of PMTs in the water pool since January 2017
 - Reduction in muon detection efficiency
 - > Muon decays and additional spallation
- Lower the hit multiplicity of PMTs in IWS to tag muons
- Extend cut on E_{prompt} to determine the rate and spectrum for fast neutron and muon-x

Performance of Antineutrino Detectors

• IBD candidates including background (< 3%)

• Antineutrino detectors in the same hall have similar performance

12

IBD Rate (background subtracted)

• Side-by-side comparison: measurements consistent with predictions

Errors include relative detection efficiency of 0.13%

- Correlation with operation of reactors
 - Expectation based on weekly reactor operational information
 - Measurements track expectations

Prompt-energy Spectra

• The best-fit prompt energy distribution is in excellent agreement with the observed spectra in each experimental hall.

Improved $\sin^2 2\theta_{13}$ and Δm^2_{32}

Phys. Rev. Lett. 130, 161802 (2023)

Present Global Landscape

• Compare Daya Bay's current results with published results

First Evidence of Reactor \overline{v}_e with E > 10 MeV

Phys. Rev. Lett. 129, 041801 (2022)

- Discover reactor antineutrinos above 10 MeV with 6.2σ significance for the first time
- Compared with data, a deficit of 29% in 8-11 MeV with SM2018, and larger disagreement above 7 MeV for extrapolated HM
- Can come from high-Q β -decay of short-lived isotopes, e.g. ^{88,90}Br, ^{94,96,98}Rb

Daya B

Summary

- > Acquired the largest sample of reactor antineutrinos to date
- > Obtains the world's most precise determination of $\sin^2 2\theta_{13}$
- > Provides one of the best measurements of $|\Delta m^2_{32}|$
- > Yields leading results on other topics not covered here such as
 - Search for a light sterile neutrino
 - Measurement of absolute flux and spectrum of reactor \overline{v}_e
 - Evolution of absolute reactor \bar{v}_e flux and spectrum
- > Will have more results to be presented in the future, for example:
 - Updated results on oscillation parameters with nH samples

The Daya Bay Collaboration

Thank you!

Backup

Non-linear Energy Response

• Due to nature of liquid scintillator (LS) and charge measurement of electronics

Improved Nonuniformity of Energy Scale

- Additional non-uniformity on top of already-corrected geometric nonuniformity
 - Residual effect of the Earth magnetic field
 - Dead PMTs or high-voltage supply channels
- Corrections
 - \triangleright Use γ 's from spallation-neutron capture on Gd and α 's from natural radioactive isotopes
 - > Time dependent, referencing to the γ 's from spallation-neutron capture

• The largest additional correction is about 3%

Energy Scale

- Gain of photomultiplier tubes
 - Single-photoelectron dark noise
 - Weekly LED monitoring
- Energy calibration
 - Weekly ⁶⁸Ge, ⁶⁰Co, ²⁴¹Am-¹³C
 - Spallation neutrons
 - Natural radioactivity

Relative uncertainty in energy scale: ~0.2%

■⁹Li/⁸He Background

- ${}^{9}\text{Li}/{}^{8}\text{He}$
 - > β -n decay
 - \succ $\tau_{Li} = 257.2 \text{ ms}, \tau_{He} = 171.7 \text{ ms}$
- Perform a multi-dimensional fit using
 - > Time interval after the preceding muon $(t_{\text{IBD}} t_{\mu})$
 - > Prompt energy (E_{prompt})
 - \blacktriangleright Distance between the prompt and delayed signals (ΔR)
 - ▶ Low-energy ($E_{vis} < 2 \text{ GeV}$) and high-energy ($E_{vis} > 2 \text{ GeV}$) muon samples from all three halls simultaneously

Summary Table

	EH1		EH2		EH3			
	AD1	AD2	AD3	AD8	AD4	AD5	AD6	AD7
$\bar{\nu}_e$ candidates	794335	1442475	1328301	1216593	194949	195369	193334	180762
DAQ live time [days]	1535.111	2686.11	2689.88	2502.816	2689.156	2689.156	2689.156	2501.531
ϵ_{μ}	0.8006	0.7973	0.8387	0.8366	0.9815	0.9815	0.9814	0.9814
$\bar{\epsilon}_m$	0.9671	0.9678	0.969	0.9688	0.9693	0.9693	0.9692	0.9693
Accidentals [day-1]	7.11 ± 0.01	$\boldsymbol{6.76\pm0.01}$	5.00 ± 0.00	4.85 ± 0.01	0.80 ± 0.00	0.77 ± 0.00	0.79 ± 0.00	0.66 ± 0.00
Fast neutron & muon-x [day-1]	0.83 ± 0.17	0.96 ± 0.19	0.56 ± 0.11	0.56 ± 0.11	0.05 ± 0.01	0.05 ± 0.01	0.05 ± 0.01	0.05 ± 0.01
⁹ Li, ⁸ He [AD ⁻¹ day ⁻¹]	2.97 ± 0.53		2.09 ± 0.36		0.25 ± 0.03			
²⁴¹ Am- ¹³ C [day ⁻¹]	0.16 ± 0.07	0.13 ± 0.06	0.12 ± 0.05	0.11 ± 0.05	0.04 ± 0.02	0.04 ± 0.02	0.04 ± 0.02	0.03 ± 0.01
$^{13}C(\alpha, n)^{16}O [day^{-1}]$	0.08 ± 0.04	0.06 ± 0.03	0.04 ± 0.02	0.06 ± 0.03	0.04 ± 0.02	0.04 ± 0.02	0.03 ± 0.02	0.04 ± 0.02
$\bar{\nu}_e$ rate, $R_{\bar{\nu}_e}$ [day ⁻¹]	657.11 ± 0.94	685.09 ± 0.81	599.83 ± 0.65	592.07 ± 0.67	75.03 ± 0.18	75.22 ± 0.18	74.42 ± 0.18	74.94 ± 0.18