Luminosity at LHCb in Run 3

Lepton-Photon 2023, Melbourne

Niall McHugh, on behalf of the LHCb collaboration

Basic luminosity definitions

- Luminosity relates the cross section, σ_{c}, of some process, c , to its production rate, R_{c} :

$$
\mathscr{L}_{\mathrm{int} .}=\frac{1}{\sigma_{\mathrm{c}}} \int R_{\mathrm{c}}(t) d t
$$

- Crucial input to cross section measurements - ~ 15% of LHCb results (e.g. [JHEP 06 (2023) 22], [JHEP 07 (2022) 26])
- At LHCb, online luminosity used for levelling throughout each fill
- Beams offset at start of fill then gradually brought together

Relative luminosity measurements

- Measure rates proportional to \mathscr{L} without absolute calibration
- Provide online luminosity during data taking
- Runs 1 and 2: calo E_{T}
- Run 3: PLUME (backup hierarchy W.I.P.)
- Provide counter rates for offline calibrations and propagation to 'physics' luminosity
- LogZero method historically used at LHCb:
- $\mu_{\mathrm{c}}=-\log (P(0))=-\log \left(n_{\text {empty }} / n_{\text {total }}\right)$, assuming Poisson statistics

$$
\left(P(0)=\frac{\mu_{\mathrm{c}}^{0} \exp \left(-\mu_{\mathrm{c}}\right)}{0!}\right)
$$

- For Run 3, $\mu \times 5 \Longrightarrow$ potentially shift to Linear or PGF (generalisation of Linear/LogZero) method

The LHCb upgrade for Run 3

PLUME

Probe for LUminosity MEasurement

- New for Run 3 - dedicated luminosity sub-detector!
- Design:
- Hodoscope of 22 PMT pairs (+2 for timing) around the upstream beam-pipe
- Detect Cherenkov radiation produced by particles traversing quartz tablet
- Readout with calorimeter electronics
- Radiation hard \Rightarrow time-stability of counters
- Purpose:
- Online luminosity for levelling ($\leq 10 \%$ precision, 3s integration time)
- Stable counter(s) for absolute calibrations ($\sim 1 \%$ precision)
- Fast ($\sim 100 \mathrm{ps}$) timing \Rightarrow monitor LHCb/LHC clock shift, beam 2 bunch structure measurements

Luminosity counters

- Every sub-detector can be a luminosity counters
- Stable ratios give confidence in time-stability and μ-linearity
- Requirements:
- Linear scaling with \mathscr{L}

- Stable in time
- No dependence on LHC filling scheme etc
- (Optionally) reasonable fraction of empty events for LogZero method

6

Absolute luminosity measurements

- Physics luminosity propagated from absolute calibration measurements:

Absolute calibration: vdM

- van der Meer principle: scan beams across one another to integrate out bunch profiles
- Cross section given by integral of $\mu_{c} / N_{1} N_{2}$ across the ($\Delta x, \Delta y$)-plane
- Bunch populations from LHC instruments
- 2D scans pioneered at LHCb in Run 2
- Allows to fully control bunch shape non-factorisablility, $\rho(x, y) \neq \rho(x) \rho(y)$
- Expect to be more widely adopted in Run 3
- Dominant systematics: beam-beam effect, beam drifts, non-factorisability
- Precision: 1.47 \% at LHCb in Run 1 [JINST 9 P12005]

$$
\sigma_{\mathrm{c}}=\int \frac{\mu_{\mathrm{c}}(\Delta x, \Delta y)}{N_{1} N_{2}} d \Delta x d \Delta y
$$

First absolute calibration with PLUME @

$$
\sqrt{s}=0.9 \mathrm{TeV}
$$

[LHCB-FIGURE-2022-012]

Run 3 preliminary vdM results

- Absolute luminosity measurement at LHCb at 13.6 TeV !
- Results from PLUME analysis of November 2022 vdM scans
- Several counter options: PMT pair coincidences (shown), average ADC counts, single PMT rates
- Linearity of each counter with \mathscr{L} under study - counters taken at full crossing rate ($22 \times 11.245 \mathrm{kHz}$) !
- Analysis of other counters ongoing
- Emittance scan (per-fill small vdM) machinery in place; commissioning ongoing

Absolute calibration: BGI
 $$
\left(\mathcal{O}=\int \rho_{1}(\vec{x}) \rho_{2}(\vec{x}) d \vec{x}\right)
$$

- Reconstruct beam profiles using beam-gas interactions
- Relating luminosity to beam parameters:

$$
\mathscr{L}=n_{\text {crossings }} \times N_{1} N_{2} \mathcal{O} \Longrightarrow \sigma_{\mathrm{c}}=\frac{\mu_{\mathrm{c}}}{N_{1} N_{2} \mathcal{O}}
$$

- Overlap integral assuming Gaussian bunches:
[JINST 9 P12005]
LHCb

Beam 2

Beam-beam

- New regime with SMOG2: beam 1 statistics \approx beam-beam statistics
- Dominant systematics: measurement spread, vertex resolution

SMOG2 storage cell

- $\underline{S} y s t e m$ for Measuring Overlap with Gas (SMOG) developed for luminosity in Run 2
- Demonstrated possibilities for fixed target physics at LHCb
- New for Run 3: SMOG2 gas storage cell
- Two halves \Rightarrow open and close with VELO
- Possible to inject $\mathrm{H}_{2}, \mathrm{D}_{2}, \mathrm{He}, \mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{Ne}, \mathrm{Ar}, \mathrm{Kr}, \mathrm{Xe}$
- Gas areal density increased by order of magnitude from SMOG
- e.g. $\sim 5.6 \times 10^{11} \rightarrow 6.0 \times 10^{12}$ atoms $/ \mathrm{cm}^{2}$ for He

First successful injection (Ar) in closed cell on 1/11/23!

SMOG2 commissioning

- LHCb operating as both colliding and fixed target experiment
- Successful commissioning programme with $\mathrm{Ar}, \mathrm{H}_{2}$, and He injections
- Successful injections for November 2022 vdM ghost charge measurements (next slide)

November 2022 ghost charge measurements

- Bunch populations $\left(N_{1}, N_{2}\right)$ from LHC transformers crucial for absolute \mathscr{L} for all LHC experiments
- Ghost charge: circulating in LHC, outside filled bunch slots (25ns)
- Measure at LHCb using beam-gas interactions in non-colliding crossings
- Satellite charge: in filled bunch slot, outside filled RF bucket (2.5ns)
- 100 ps timing with PLUME \Rightarrow possible at LHCb for beam 2 in the future

Summary

- LHCb: almost entirely new detector for Run 3
- New 40 MHz fully software trigger
- PLUME (dedicated luminosity detector) and SMOG2 (gas storage cell) successfully commissioned
- First vdM calibrations at 13.6 TeV
- Full suite of counters implemented, further analysis ongoing
- New for Run 3: Emittance scans to test linearity to higher physics μ
- Luminosity providing some early Run 3 LHCb results:
- First absolute calibration with PLUME
- November 2022 ghost charge measurements

Backup material

Emittance scans

- New at LHCb for Run 3: emittance scans every fill
- Already common at other LHC experiments
- Check linearity of counters to physics conditions ($\sim 5-10 \times$ higher μ)
- Check time-stability of counters
- Machinery in place; commissioning still ongoing
- Scan one axis with other offset, then switch and repeat
- Too high luminosity at head-on

