

Luminosity at LHCb in Run 3

Lepton-Photon 2023, Melbourne

Niall McHugh, on behalf of the LHCb collaboration

Basic luminosity definitions

• Luminosity relates the cross section, $\sigma_{\rm c}$, of some process, c, to its production rate, $R_{\rm c}$:

$$\mathcal{L}_{\text{int.}} = \frac{1}{\sigma_{\text{c}}} \int R_{\text{c}}(t) dt$$

- Crucial input to cross section measurements $\sim 15\%$ of LHCb results (e.g. [JHEP 06 (2023) 22], [JHEP 07 (2022) 26])
- At LHCb, online luminosity used for levelling throughout each fill
 - Beams offset at start of fill then gradually brought together

LHCb Integrated Luminosity in p-p in 2023

Relative luminosity measurements

- Measure rates proportional to ${\mathscr L}$ without absolute calibration
- Provide online luminosity during data taking
 - Runs 1 and 2: calo E_T
 - Run 3: PLUME (backup hierarchy W.I.P.)
- Provide counter rates for offline calibrations and propagation to 'physics' luminosity
- LogZero method historically used at LHCb:
 - $\mu_{\rm c} = -\log(P(0)) = -\log(n_{\rm empty}/n_{\rm total})$, assuming Poisson statistics

$$\left(P(0) = \frac{\mu_c^0 \exp(-\mu_c)}{0!}\right)$$

For Run 3, $\mu \times 5 \implies$ potentially shift to Linear or PGF (generalisation of Linear/LogZero) method

The LHCb upgrade for Run 3

+ New frontend electronics and DAQ for all sub-

detectors

+ Fully software trigger at 40 MHz on GPUs + CPUs

PLUME

[CERN-LHCC-2021-002]

Probe for <u>LU</u>minosity <u>ME</u>asurement

- New for Run 3 dedicated luminosity sub-detector!
- Design:
 - Hodoscope of 22 PMT pairs (+2 for timing) around the upstream beam-pipe
 - Detect Cherenkov radiation produced by particles traversing quartz tablet
 - Readout with calorimeter electronics
 - ► Radiation hard ⇒ time-stability of counters

Purpose:

- Online luminosity for levelling ($\leq 10\%$ precision, 3s integration time)
- Stable counter(s) for absolute calibrations ($\sim 1 \%$ precision)
- Fast (~ 100 ps) timing \Rightarrow monitor LHCb/LHC clock shift, beam 2 bunch structure measurements

Luminosity counters

- **Every sub-detector can be a luminosity counters**
 - Stable ratios give confidence in time-stability and μ -linearity
- Requirements:
 - Linear scaling with \mathscr{L}
 - Stable in time
 - No dependence on LHC filling scheme etc

(Optionally) reasonable fraction of empty events for LogZero method

RICH hits VELO track/vertex counter ratio for **entire**

Run 2 - extremely stable!

Absolute luminosity measurements

Physics luminosity propagated from absolute calibration measurements:

Relative luminosity from LogZero (or Linear/PGF)

$$\mathcal{L}_{\text{int.}} = \frac{\mu_{\text{c}}}{\sigma_{\text{c}}} \times n_{\text{crossings}}$$

Absolute calibration: van der Meer (vdM) or beam-gas imaging (BGI)

Special conditions fill \sim once per year, per \sqrt{s} , per beam type (pp, pPb, etc)

Original proposal (1D): [CERN-ISR-PO-68-31]

2D generalisation: [CERN-pp-Note-38]

Absolute calibration: vdM

- van der Meer principle: scan beams across one another to integrate out bunch profiles
 - Cross section given by integral of μ_c/N_1N_2 across the $(\Delta x, \Delta y)$ -plane
 - Bunch populations from LHC instruments
- 2D scans pioneered at LHCb in Run 2
 - Allows to fully control bunch shape non-factorisablility, $\rho(x, y) \neq \rho(x)\rho(y)$
 - Expect to be more widely adopted in Run 3
- Dominant systematics: beam-beam effect, beam drifts, non-factorisability
- Precision: 1.47 % at LHCb in Run 1 [JINST 9 P12005]

First absolute calibration with PLUME @ $\sqrt{s} = 0.9 \, \text{TeV}$

[LHCB-FIGURE-2022-012]

Run 3 preliminary vdM results

- Absolute luminosity measurement at LHCb at 13.6 TeV!
- Results from PLUME analysis of November 2022 vdM scans
 - Several counter options: PMT pair coincidences (shown), average ADC counts, single PMT rates
- Linearity of each counter with \mathscr{L} under study counters taken at full crossing rate (22 × 11.245 kHz)!
- Analysis of other counters ongoing
- Emittance scan (per-fill small vdM) machinery in place; commissioning ongoing

Absolute calibration: BGI

 $\left(\mathcal{O} = \int \rho_1(\vec{x}) \rho_2(\vec{x}) d\vec{x}\right)$

- Reconstruct beam profiles using beam-gas interactions
- Relating luminosity to beam parameters:

$$\mathcal{L} = n_{\text{crossings}} \times N_1 N_2 \mathcal{O} \implies \sigma_{\text{c}} = \frac{\mu_{\text{c}}}{N_1 N_2 \mathcal{O}}$$

• Overlap integral assuming Gaussian bunches:

- 2D fits allow for modelling non-factorisability ($\mathcal{O}(\%)$) effect)
- New regime with SMOG2: beam 1 statistics ≈ beam-beam statistics
- Dominant systematics: measurement spread, vertex resolution

LHCD NACO

SMOG2 storage cell

- System for Measuring Overlap with Gas (SMOG) developed for luminosity in Run 2
 - Demonstrated possibilities for fixed target physics at LHCb
- New for Run 3: SMOG2 gas storage cell
 - ► Two halves ⇒ open and close with VELO
 - ► Possible to inject H₂, D₂, He, N₂, O₂, Ne, Ar, Kr, Xe
- Gas areal density increased by order of magnitude from SMOG
 - e.g. $\sim 5.6 \times 10^{11} \rightarrow 6.0 \times 10^{12}$ atoms / cm² for He

First successful injection (Ar) in closed cell on 1/11/23!

[CERN-LHCC-2019-005]

SMOG2 commissioning

- LHCb operating as both colliding and fixed target experiment
- Successful commissioning programme with Ar, H₂, and He injections
- Successful injections for November 2022 vdM ghost charge measurements (next slide)

November 2022 ghost charge measurements

- Bunch populations (N_1, N_2) from LHC transformers crucial for absolute \mathscr{L} for all LHC experiments
- Ghost charge: circulating in LHC, outside filled bunch slots (25ns)
 - Measure at LHCb using beam-gas interactions in non-colliding crossings
- Satellite charge: in filled bunch slot, outside filled RF bucket (2.5ns)
 - ▶ 100 ps timing with PLUME \Rightarrow possible at LHCb for beam 2 in the future

Summary

- LHCb: almost entirely new detector for Run 3
 - New 40 MHz fully software trigger
 - PLUME (dedicated luminosity detector) and SMOG2 (gas storage cell) successfully commissioned
- First vdM calibrations at 13.6 TeV
 - Full suite of counters implemented, further analysis ongoing
- New for Run 3: Emittance scans to test linearity to higher physics μ
- Luminosity providing some early Run 3 LHCb results:
 - First absolute calibration with PLUME
 - November 2022 ghost charge measurements

Backup material

- New at LHCb for Run 3: emittance scans every fill
 - Already common at other LHC experiments
 - Check linearity of counters to physics conditions (~ 5 $10 \times$ higher μ)
 - Check time-stability of counters
 - Machinery in place; commissioning still ongoing
- Scan one axis with other offset, then switch and repeat
 - Too high luminosity at head-on

