

Measurement of Beam Polarization at an e⁺e⁻ B-Factory with a New Tau Polarimetry Technique

Gerald Eigen

(orcid: 0000-0003-3529-5171, gerald.eigen@cern.ch)

on behalf of the

BABAR Collaboration

19 July 2023

Study e⁻ Beam Polarization in BABAR

- BABAR and PEP-II operated at SLAC from 1999-2008
- Beam polarization was expected to be zero
- We developed a method that could be use at any e⁺e⁻ collider
- BABAR collected 432 fb⁻¹ of data on the Υ(4S) resonance

In Chiral Belle plan is to achieve a 70% polarized e⁻ beam

A polarized electron beam would allow Belle II to make many precise measurements of electroweak parameters, including A_{LR} for e, μ , τ ,c,b; for the Born level s-channel process:

Precision measurement of running of weak mixing angle: sensitive to new dark Z boson when away from Z-pole
 adapted from figure 3 of H. Davoudiasi, H.S. Lee
 Chiral Belle expects:

 Chiral Belle expects: σ(sin²θ_w)≈0.0002 (40 ab⁻¹) Red bar shows expected sensitivity

Beam Polarization also enables precision measurements of

- Tau Lepton Magnetic Form factor F₂(10GeV) → τ g-2 with precision approaching regime in tau that is sensitive to Minimal Flavour Violation equivalent of muon g-2 anomaly
- Tau EDM
- Tau Michel parameters

Beam Polarization also reduces backgrounds in searches for $\tau \rightarrow \mu \gamma$ and $\tau \rightarrow e \gamma$

Other measurements to come from APV(Ra⁺), Moller, P2, and the SoLID experiments– all but Chiral Belle use only first generation fermions and have lower sensitivity (see backup slides)

Tau Polarimetry

- The polarization of tau's (P_t) produced in e⁺e⁻ collisions at 10.58 GeV is related to the electron beam polarization (P_e) through: $P_{\tau} = P_{0} \frac{\cos \theta}{1 + \cos^{2} \theta} - \frac{8G_{F}s}{4\sqrt{2}\pi\alpha} g_{V}^{\tau} (g_{A}^{\tau} \frac{|\vec{P}_{\tau}|}{E_{\tau}} + 2g_{A}^{e} \frac{\cos \theta}{1 + \cos^{2} \theta})$
- Tau polarization information can be extracted from the kinematics of the tau decay

- The Belle II physics program assumes a 70% polarized e^{-} beam where the polarization is measured $\leq 0.5\%$
- Compton polarimeters have an uncertainty associated with modelling the spin transport from the polarimeter to the interaction point (IP)
- By using Tau Polarimetry we can extract the average beam polarization directly from the data at the IP₅
 G. Eigen, LP23 Melbourne, 19/07/2023

Tau Event Selection

- Selected tau events in a 1v1 topology, (ρ vs. e or μ)
 - ρ has large branching fraction, lepton for clean tag
- Signal candidates are defined as a charged particle with a π^0
- qq
 events are eliminated with the lepton requirement
- Angular cuts and a minimum p_T of 350 MeV reduce two-photon and Bhabha contamination
- Results in a 99.9% pure tau-pair sample (0.05% Bhabha, 0.05% $\mu+\mu^{-}$)
- 88% of selected events contain a $\tau^{\pm} \rightarrow \pi^{\pm}\pi^{0}\nu_{\tau}$ decay
 - 12% other tau hadronic decays

Polarization Observable cos θ^*

• Polarization sensitivity in a rho decay is maximized by analyzing two angular variables² (cos θ^* and cos ψ) in addition to cos θ

² K. Hagiwara, A. Martin, D. Zeppenfeld, Tau Polarization Measurements at LEP and SLC, Phys. Lett. B. 235, 1998, DOI: 10.1016/0370-2693(90)90120-U

Polarization Observable cos ψ

Polarization sensitivity in a rho decay is maximized by analyzing two angular variables² in

² K. Hagiwara, A. Martin, D. Zeppenfeld, Tau Polarization Measurements at LEP and SLC, Phys. Lett. B. 235, 1998, DOI: 10.1016/0370-2693(90)90120-U

Polarization Fit

- To extract the average beam polarization from a data set we employ a binned maximum likelihood fit using Barlow and Beeston³ template fit methodology
- Data and MC is binned in 3D histograms of $\cos\theta^*$, $\cos\psi$, and $\cos\theta$
- Tau MC was produced for a left and right polarized electron beam

 $\equiv a_1 - a_2$

The data is fit as a linear combination of the histograms

$$D = a_l L + a_r R + a_b B + a_m M + a_u U + a_c C$$

$$\begin{array}{c|c} a_{l} & 0.499 \\ \hline a_{r} & 0.499 \\ \hline a_{b} & 3.8 \times 10^{-5} \\ \hline a_{m} & 1.4 \times 10^{-3} \\ \hline a_{u} & 3.8 \times 10^{-4} \\ \hline a_{c} & 4.8 \times 10^{-5} \end{array}$$

D=data L=Left Polarized Tau MC R=Right Polarized Tau MC B=Bhabha(
$$e^+e^-$$
) M= $\mu\mu$ U=uds C= $c\bar{c}$
 $a_i = fit contribution$

• For the τ^+ and τ^- combined result, some systematic errors cancel

³ R. Barlow, C. Beeston; Computer Physics Communications, Volume 77, Issue 2, 1993, Pages 219-228, https://doi.org/10.1016/0010-4655(93)90005-W

Beam Polarization MC Fit Validation

- As PEP-II had no beam polarization we performed MC studies of the polarimetry technique for arbitrary beam polarization states for validation of the method
- This is done by splitting each of the polarized tau MC samples in half
- One half of each is used to perform the polarization fit
- The other half is used to mix specific beam polarization states
 - e.g. 70% polarized = 85% left +15% right
- Simulated beam polarization states are produced in steps of 10% beam polarization
- We found the fit responded well and was able to correctly measure any designed beam state

Example Fit Result for <P>

Sample	Positive charge	Negative charge	Total
Run 3 (32.28 fb ⁻¹)	0.0151±0.0120	-0.0047±0.0120	0.0048±0.0083

- Fit result projected to each of the fit variables
- Result from preliminary Run 3 fit, Negative charges

Full Measurement

 Performing the measurement on the full 424.2 fb⁻¹

Sample	Luminosity (fb ⁻¹)	Average Polarization
Run 1	20.37	0.0062±0.0157
Run 2	61.32	-0.0004±0.0090
Run 3	32.28	0.0048±0.0083
Run 4	99.58	-0.0114±0.0071
Run 5	132.33	-0.0040±0.0063
Run 6	78.31	0.0157±0.0082
Total	424.2	0.0035±0.0024

Preliminary measurement:

 $\langle P \rangle = 0.0035 \pm 0.0024_{stat} \pm 0.0029_{sys}$ **PRELIMINARY**

Systematic Uncertainties (21)

Source	$\operatorname{Run} 1$	$\operatorname{Run}2$	Run 3	Run 4	$\operatorname{Run}5$	Run 6	Combined
π^0 efficiency	0.0025	0.0016	0.0013	0.0018	0.0006	0.0017	0.0013
Muon PID	0.0018	0.0018	0.0029	0.0011	0.0006	0.0016	0.0012
Split-off modeling	0.0015	0.0017	0.0016	0.0006	0.0016	0.0020	0.0011
Neutral energy calibration	0.0027	0.0012	0.0023	0.0009	0.0014	0.0008	0.0010
π^0 mass	0.0018	0.0028	0.0010	0.0005	0.0004	0.0004	0.0008
ρ decay collinearity	0.0015	0.0009	0.0016	0.0007	0.0005	0.0005	0.0007
π^0 likelihood	0.0015	0.0009	0.0015	0.0006	0.0003	0.0010	0.0006
Electron PID	0.0011	0.0020	0.0008	0.0006	0.0005	0.0001	0.0005
Particle transverse momentum	0.0012	0.0007	0.0009	0.0002	0.0003	0.0006	0.0004
Boost modeling	0.0004	0.0019	0.0003	0.0004	0.0004	0.0004	0.0004
Momentum calibration	0.0001	0.0014	0.0005	0.0002	0.0001	0.0003	0.0004
Max EMC acceptance	0.0001	0.0011	0.0008	0.0001	0.0002	0.0005	0.0003
au direction definition	0.0003	0.0007	0.0008	0.0003	0.0001	0.0004	0.0003
Angular resolution	0.0003	0.0008	0.0003	0.0003	0.0002	0.0003	0.0003
Background modeling	0.0005	0.0006	0.0010	0.0002	0.0003	0.0003	0.0003
Event transverse momentum	0.0001	0.0013	0.0005	0.0002	0.0002	0.0004	0.0003
Momentum resolution	0.0001	0.0012	0.0004	0.0002	0.0001	0.0005	0.0003
ρ mass acceptance	0.0000	0.0011	0.0003	0.0001	0.0002	0.0005	0.0003
τ branching fraction	0.0001	0.0007	0.0004	0.0002	0.0002	0.0002	0.0002
$\cos \theta^*$ acceptance	0.0002	0.0006	0.0004	0.0001	0.0001	0.0004	0.0002
$\cos\psi$ acceptance	0.0002	0.0003	0.0002	0.0002	0.0002	0.0003	0.0002
Total	0.0058	0.0062	0.0054	0.0030	0.0026	0.0038	0.0029

Conclusions

 BABAR has implemented the first application of the new tau polarimetry technique to preliminarily measure the PEP-II average beam polarization

 $\langle P \rangle = 0.0035 \pm 0.0024_{\text{stat}} \pm 0.0029_{\text{sys}}$

- We identified 21 sources of systematic uncertainty
- Modelling and understanding of neutral processes dominates the largest systematics
- The precision is better than 0.5%
- This new tau polarimetry technique could be applied at other e⁺e⁻ colliders interested in polarization, like Chiral Belle and ILC
- Paper should be on the arXiv this week and is aimed for publication in Phys. Rev. D

Thank You!

Snowmass 2021 White PaperUpgrading SuperKEKB with a Polarized Electron Beam:Discovery Potential and Proposed Implementation arXiv:2205.12847

PRELIMINARY

Backup Slides

- Beam polarization is being considered as a future upgrade to SuperKEKB
- A polarized electron beam would allow Belle II to make many precise measurements of electroweak parameters. Including A_{LR} for e,μ,τ,c,b. For Born level s-channel process:

$$A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \frac{4}{\sqrt{2}} \left(\frac{G_F s}{4\pi\alpha Q_f} \right) g_A^e g_V^f \langle P \rangle \propto T_3^f - 2Q_f \sin^2 \theta_W$$

	Standard Model	World Average	Chiral Belle 40ab ⁻¹	
Fermion	$g_{\scriptscriptstyle V}^f$ SM	g_V^f wa	$\pmb{\sigma}\left(\pmb{g}_{V}^{f} ight)$ CB	
b-quark	-0.3437±0.0001	-0.3220 ±0.0077	0.0020(4x improvement)	b- and c- uncertainties
c-quark	0.1920±0.0002	0.1873 ±0.0070	0.0010(7x improvement)	dominated by uncertainty on <p></p>
Tau	-0.0371±0.0003	-0.0366 ±0.0010	0.0008	
Muon	-0.0371±0.0003	-0.03667±0.0023	0.0005(4x improvement)	
Electron	-0.0371±0.0003	-0.03816±0.00047	0.0006	

- Beam polarization is being considered as a future upgrade to SuperKEKB
- A polarized electron beam would allow Belle II to make many precise measurements of electroweak parameters. Including A_{LR} for e,μ,τ,c,b. For Born level s-channel process:

Polarimetry and cross-sections

- If both beams are polarized the cross-section enhancement adds additional complementary information to the polarization knowledge
- Interaction matrix helps to visualize the process:

e⁺∖e⁻	Ŀ	R⁻
R+	R⁺L⁻	R⁺R⁻
L+	L+L-	L⁺R-

- Only the L⁺R⁻ and R⁺L⁻ crossing result in a collision, the L⁺L⁻ and R⁺R⁻ crossings continue down the beam pipe
- For unpolarized beams L=R=0.5, and each quadrant represent 25% of crossings
- The average beam polarization, <P>, is (R⁺L⁻-L⁺R⁻)/(R⁺L⁻+L⁺R⁻)
- The cross-section multiplier, σ , is $(R^+L^-+L^+R^-)/(R^+L^-_{unpolarized}+L^+R^-_{unpolarized})$

70% polarized e⁻ beam

e⁺\e-	0.85	0.15
0.5	0.425	0.075
0.5	0.425	0.075

$$\langle P \rangle = \frac{0.5 * 0.85 - 0.5 * 0.075}{0.5 * 0.85 + 0.5 * 0.075} = 0.7$$
$$\sigma = \frac{0.425 + 0.075}{0.25 + 0.25} = 1$$

Polarimetry and cross-sections

- P> is the variable physics is sensitive to, e.g. 10% increase in <P> is a 10% increase in A_{LR}
- Polarizing both beams enhances <P> and cross-section

70% po	olarized e	beam
e⁺\e⁻	0.85	0.15
0.5	0.425	0.075
0.5	0.425	0.075
<	<p> = 0. σ = 1</p>	7

- Polarizing both beams significantly improves the physics sensitive <P>
- Also gain additional statistics through cross-section enhancement
- cross-section is not unique to a specific <P> but is highly correlated
 - 75% polarized e^- , 65.3% polarized e^+ , results in <P>=0.942, σ =1.49
- Precision measurements of production cross-sections can cross-check Tau Polarimetry technique and vice-versa

Rho Spin Analysis

The rho complicates the spin projections, which necessitates two variables to extract the polarization L-H τ ρ SPIN PROJ = 0 ρ SPIN PROJ = -1

From Dr. Manuella Vincter, PhD thesis, UVIC, 1996