

Introduction

- The decay $\bar{B} \rightarrow D \ell-\bar{v}$ proceeds through a simple tree-level diagram and has been studied by many experiments
- The decay proceeds via the vector current
- The decay rate depends on the CKM element $\left|V_{\text {cb }}\right|$ and in the limit of neglecting the lepton mass on just one form factor $f_{+}\left(q^{2}\right)$
- Measurements of $\left|V_{\mathrm{cb}}\right|$ from inclusive $\mathrm{b} \rightarrow c \ell^{-} \bar{v}$ decay and exclusive $B \rightarrow D^{()} \ell-\bar{v}$ decays show a 3σ level disagreement

- Using the full data set, BABAR has performed a new study of $\bar{B} \rightarrow D e^{-\bar{v}}$ by analyzing the process $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow Y(4 \mathrm{~S}) \rightarrow B_{\mathrm{tag}} \bar{B}_{\mathrm{sig}}$, where B_{tag} is reconstructed in B hadronic decays and $\bar{B}_{\text {sig }}$ represents the $B \rightarrow D \ell-\bar{v}$ signal mode
- Two different form factor parametrizations are employed, the model-independent Boyd-Grinstein-Lebed (BGL) expansion and the model-dependent Caprini-Lellouch-Neubert (CLN) expansion

Analysis Strategy

- Data sample consist of $471 \times 10^{6} Y(4 \mathrm{~S}) \rightarrow B \bar{B}$ events (426 fb-1) NIM A726, 203 (2013)
- One B is tagged via a hadronic decay $\left(D^{(*) 0}, D^{(*)+}\right.$, $\left.D_{\mathrm{s}}{ }^{(*)+}, \mathrm{J} / \psi\right)$ plus up to 5 charged charmless light mesons and 2 neutral mesons
- The reconstruction relies on 2 variables
$m_{\mathrm{ES}}=\sqrt{\frac{1}{4} s-\left|\vec{p}_{\mathrm{tag}}^{*}\right|^{2}}$ where $\vec{p}_{\text {tag }}$ and $E_{\text {tag }}^{*}$ are 3-momentum and energy
$\Delta E=E_{\mathrm{tag}}^{*}-\frac{1}{2} \sqrt{s}$

- Select events with $m_{E S}>5.27 \mathrm{GeV} / c^{2}$ and $|\Delta E|<72 \mathrm{MeV}$
- On the signal side we require a D candidate in $D^{0} \rightarrow K^{-} \pi^{+}, K^{-} \pi^{+} \pi^{0}, K^{-} \pi^{+} \pi^{+} \pi$ and $D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}, K^{-} \pi^{+} \pi \pi^{0}$ plus an e^{-}with $p_{\mathrm{e}}>200 \mathrm{MeV} / \mathrm{c}$ or a μ with $p_{\mu}>300 \mathrm{MeV} / \mathrm{c}$ 10 modes
- Analysis is similar to that of $\bar{B} \rightarrow D^{*} \ell^{-} \bar{v} \quad$ PRL 123, 091801 (2019)
G. Eigen, LP23 Melbourne, 18/07/2023

Analysis Strategy cont.

- Determine missing momentum

$$
p_{v} \equiv p_{\text {miss }}=p_{e^{+} e^{-}}-p_{\text {tag }}-p_{D}-p_{\ell}
$$

- For a semileptonic decay with one missing neutrino this is fulfilled
- We use the discriminating variable $U=E_{\text {miss }}^{* *}-\left|\vec{p}_{\text {miss }}^{* *}\right|$ ($E_{\text {miss }}$ and $\vec{p}^{* *}$ miss are v energy and 3 -momentum in $\bar{B}_{\text {sig }}$ rest frame)

- We perform a kinematic fit of the entire event, constraining $B_{\mathrm{tag}}, B_{\mathrm{sig}}$ and D mesons to their nominal masses, constrain B and D decay products to separate vertices
- In case of multiple candidates that with the lowest $E_{\text {Extra }}$ is retained
- A second kinematic fit with a $U=0$ constraint is done to improve the resolution in the variables q^{2} and $\cos \theta_{\ell}$ (q is the momentum transfer to the $\ell-\bar{v}$ system and θ_{ℓ} is the lepton helicity angle)
G. Eigen, LP23 Melbourne, 18/07/2023

Signal-to-Background Separation

- We use a novel technique to separate signal from background since the background shape varies across phase space
- Primary background is from $\bar{B} \rightarrow D^{*} \ell-\bar{v}$ with $D^{*} \rightarrow D \pi$ or $D^{*} \rightarrow D \gamma$

background pdf

- Background from charmless B decays and $q \bar{q}$ continuum is small
- We define pdfs for signal (4 two-piece Gaussians) and background (2 two-piece Gaussians)
- We test the binned fit on the U distribution for the $K-\pi^{+} e^{-} \bar{v}$ mode
G. Eigen, LP23 Melbourne, 18/07/2023

Background Varies across Phase Space

- We show that this method works in different regions of $\cos \theta_{\ell}$ and q^{2}
$\left|\cos \theta_{\ell}+0.85\right|<0.05$

$\left|\cos \theta_{\ell}-0.85\right|<0.05$
- Binned fits to data in $K-\pi^{+} \pi^{+} e^{-\bar{v}}$ mode
- Fits describe data well
$\left|q^{2}-0.75\right|<0.25 \mathrm{GeV}^{2} / \mathrm{c}^{2}$

- Binned fits to data in $K-\pi^{+} \pi^{-\pi^{+}} e^{-\bar{v}}$ mode
- Fits describe data well
- Distributions illustrate different background shapes
G. Eigen, LP23 Melbourne, 18

Extraction of Signal Weight Factors

- We perform continuous U-variable fits in q^{2} and $\cos \theta_{\ell}$ regions, selecting 50 events at a time that are closest to a selected event to determine signal and background components from which we determine signal weights for each event
- Signal weight $\mathcal{Q}_{i}=\frac{\mathcal{S}_{i}\left(U_{i}\right)}{\mathcal{S}_{i}\left(U_{i}\right)+\mathcal{B}_{i}\left(U_{i}\right)}$ and background weight $1-\mathcal{Q}_{i}=\frac{\mathcal{B}_{i}\left(U_{i}\right)}{\mathcal{S}_{i}\left(U_{i}\right)+\mathcal{B}_{i}\left(U_{i}\right)}$
- We observe 16701 events in all ten modes
- To illustrate how well this procedure works, we show the U variable distributions for different q^{2} and $\cos \theta_{\ell}$ regions,
 summing the \mathcal{Q}_{i} values of all 10 modes
- Red points result from signal weights \mathcal{Q}_{i} and blue points from background weights ($1-\mathcal{Q}_{\mathrm{i}}$)

G. Eigen, LP23 Melbourne, 18/07/2023

Unbinned Angular Fits

- We require $|U|<50 \mathrm{MeV}, 0.5 \leq q^{2} \leq 10 \mathrm{GeV}^{2} / c^{2} \&\left|\cos \theta_{t}\right|<0.97$ for the final sample
- We perform ML fits in the q^{2}-cos θ_{ℓ} plane using only signal weights \mathcal{Q}_{i}
- We add two external constraints

PRD 92, 034506 (2015)

- To set normalization of the form factors, the $w \rightarrow 1$ region calculations from lattice QCD are added as Gaussian constraints ($6 f_{0,+}(w)$ MILC data points)
- To access $\left|V_{\text {cb }}\right|$ the absolute q^{2}-differential decay rate data from Belle are also incorporated as Gaussian constraints ($40 \mathrm{~d} \Pi \mathrm{~d} w$ data points) PRD 93, 032006 (2016)
- The total likelihood function is
- We perform fits both with the BGL ($\mathrm{N}=2,3$) and CLN forms
- 1d projections of the nominal fit in comparison with simulation using the BGL form

$$
\mathcal{L}(\vec{x})_{\text {Itot }}=-2 \ln \mathcal{L}(\vec{x})_{\text {BABAR }}+\chi^{2}(\vec{x})_{\text {Beele }}+\chi^{2}(\vec{x})_{\text {|FNALMMLC }}
$$

- The $\cos \theta_{\ell}$ distribution exhibits the $\sin ^{2} \theta_{\ell}$ dependence expected in the SM

Cross Checks

- Besides the nominal fit, we perform 3 other fits with different background subtraction to study systematic uncertainties
preliminary

- We perform cross checks between backgroundsubtracted data and efficiency-corrected simulations with BGL weighting and ISGW2 weighting for the confidence level of the fit
 and the $E_{\text {Extra }}$ distribution

PRD 52, 2783 (1995)

- The relative resolution of the deviation of the reconstructed-to-generated values for the q^{2} and $\cos \theta_{\ell}$ distributions

- Comparison of $(1-\mathcal{Q})$ weighted data and background simulation

$\left|V_{\mathrm{cb}}\right|$ Results

- New $\left|V_{\text {cb }}\right|$ measurements: PRD 93, 032006 (2016) - BABAR+Belle16, BGL:

$$
\left|V_{\mathrm{cb}}\right|=0.04110 \pm 0.00117 \text { (preliminary) }
$$

- BABAR+Belle16, CLN

$$
\left|V_{\mathrm{cb}}\right|=0.04074 \pm 0.00118 \quad \text { (preliminary) }
$$

- Compare with $\left|V_{c b}\right| \mathcal{G}(1) \eta_{E W}$ WA $\left(\mathcal{G}(1)=1.0541 \pm 0.0083, \eta_{\mathrm{EW}}=1.0066 \pm 0050\right)$ $\eta_{E w} \mathcal{G}(1)\left|V_{\mathrm{cb}}\right|=0.04361 \pm 0.00131$ (1.3σ higher)
$\eta_{E W} \mathcal{G}(1)\left|V_{c b}\right|_{W A}=0.04153 \pm 0.00098$

- This agrees well with the result from the PRD 107, $052008(2023) \eta_{E W} G(1) \mid V_{c b}{ }^{\dagger}\left[10^{-3}\right]$ inclusive analysis $\quad\left|V_{c b}\right|=0.04219 \pm 0.00078$
- There is some tension with $\left|V_{\mathrm{cb}}\right|$ from $\bar{B} \rightarrow D^{*} l^{-}-\bar{v}\left|V_{\mathrm{cb}}\right|=0.03846 \pm 0.00040 \pm 0.00055$

Form Factor Results

- The extracted $B \rightarrow D$ form factors have improved precision and show good agreement with the full $q^{2} B_{\mathrm{s}} \rightarrow D_{\mathrm{s}}$ HPQCD Collaboration calculation assuming flavor $\operatorname{SU}(3)$ symmetry
- Some slight tension exists in the HQET basis at the maximum recoil point, $q^{2} \rightarrow 0$ but otherwise the $\operatorname{SU}(3)$ flavor symmetry seems to hold
- So SU(3) flavor symmetry breaking cannot be large
- This should be tested in $\bar{B} \rightarrow D^{*} \ell^{-} \bar{v}$ channel

PRD 101, 074513 (2020)

Conclusions

- We performed the first 2-dimensional unbinned angular analysis in the $q^{2}-\cos \theta_{\ell}$ plane for the $\bar{B} \rightarrow D \ell^{-} \bar{v}$ process
- We used a novel event-wise signal-to-background separation
- The lepton helicity follows a $\sin ^{2} \theta_{\ell}$ distribution as expected in the SM ; this is shown for the first time confirming that the v reconstruction works well
- For the BGL form we measure $\left|V_{c b}\right|=0.04110 \pm 0.00117$, which is closer to the value measured in inclusive $b \rightarrow c \ell-\bar{v}$ decays
- The $B \rightarrow D$ form factors are found to be consistent with the $B_{\mathrm{s}} \rightarrow D_{\mathrm{s}}$ form factors predicted by lattice calculations and expected by flavor $\operatorname{SU(3)}$ relations
- This BABAR analysis will be submitted to Physical Review D

Thank you for your attention

Backup Slides

II $\bar{B} \rightarrow D e^{-} \bar{v}$ Decay Rate and Form Factors

- The amplitude for $\bar{B} \rightarrow D \ell-\bar{v}$ comes from the vector interaction term

$$
\langle D| \overline{c_{\mu}} \gamma_{\mu}|\bar{B}\rangle_{V}=f_{+}\left(q^{2}\right)\left(\left(p_{B}+p_{D}\right)_{\mu}-\frac{\left(p_{B}+p_{D}\right) \cdot q}{q^{2}} q_{\mu}\right)+f_{0}\left(q^{2}\right) \frac{\left(p_{B}+p_{D}\right) \cdot q}{q^{2}} q_{\mu}
$$

- $q=p_{\mathrm{B}}-p_{\mathrm{D}}$ is the 4-momentum of the recoiling ($\ell-\bar{v}$) system
- $\mathrm{f}_{+}\left(\mathrm{q}^{2}\right)$ and $\mathrm{f}_{0}\left(\mathrm{q}^{2}\right)$ are the vector and scalar form factors
- In HQET the form factors are written in terms of B and $D 4$-velocities v and v

$$
\frac{\langle D| \bar{c} \gamma_{\mu} b|\bar{B}\rangle_{v}}{\sqrt{m_{B} m_{D}}}=h_{+}(w)\left(v+v^{\prime}\right)_{\mu}+h_{-}(w)\left(v-v^{\prime}\right)_{\mu} \quad \text { where } \quad w=v \cdot v^{\prime}=\frac{m_{B}^{2}+m_{D}^{2}-q^{2}}{2 m_{B} m_{D}}
$$

- The two form factors are related

$$
\begin{aligned}
& f_{+}\left(q^{2}\right)=\frac{1}{2 \sqrt{r}}\left((1+r) h_{+}(w)-(1-r) h_{-}(w)\right) \\
& f_{0}\left(q^{2}\right)=\sqrt{r}\left(\frac{w+1}{1+r} h_{+}(w)-\frac{w-1}{1-r} h_{-}(w)\right) \quad \text { where } r=\frac{m_{D}}{m_{B}} \quad \text { and } \quad f_{+}(0)=f_{0}(0)
\end{aligned}
$$

$\bar{B} \rightarrow D \ell-\bar{v}$ Decay Rate and Form Factors

- The differential $\bar{B} \rightarrow D \ell^{-} \bar{v}$ decay rate is

$$
\frac{\mathrm{d} \Gamma}{\mathrm{~d} q^{2} \mathrm{~d} \cos \theta_{\ell}}=\frac{G_{F}^{2}\left|V_{c b}\right|^{2} \eta_{E W}^{2}}{32 \pi^{3}} k^{3}\left|f_{+}\left(q^{2}\right)\right|^{2} \sin ^{2} \theta_{\ell} \quad \text { where } \quad k=m_{D} \sqrt{w^{2}-1} \quad\left(\left|p_{D}\right| \text { in } B\right. \text { rest frame }
$$

- $f_{+}\left(q^{2}\right)$ is connected form factor $G(w)$

$$
\mathcal{G}(w)=\frac{4 r}{(1+r)^{2}} f_{+}\left(q^{2}\right)
$$

The BGL Form

- In the model-independent BGL (Boyd, Grinstein, Lebed) form the form factors are expressed as

$$
f_{i}(z)=\frac{1}{P_{i}(z) \phi_{i}(z)} \sum_{n=0}^{N} a_{n}^{\prime} z^{n} \quad \text { Where } \mathrm{i}=0,+, \quad z(w)=\frac{\sqrt{w+1}-\sqrt{2}}{\sqrt{w+1}+\sqrt{2}},
$$

$P_{i}(\mathrm{z})$ are Blaschke factors that remove contributions of bound state $B_{\mathrm{c}}{ }^{\left({ }^{*}\right)}$ poles, $\phi_{i}(z)$ are non-perturbative outer functions, $a_{n}{ }^{i}$ are free parameters and N is the Considered order of expansion

- Use following parameterizations
- $P_{i}(z)=1$
- $\phi_{+}(z)=\frac{1.1213(1+z)^{2} \sqrt{1-z}}{[(1+r)(1-z)+2 \sqrt{r}(1+z)]^{5}}$

$$
\phi_{0}(z)=\frac{0.5299(1+z)^{2}(1-z)^{3 / 2}}{[(1+r)(1-z)+2 \sqrt{r}(1+z)]^{4}}
$$

- The coefficients $a_{n}{ }^{i}$ satisfy the normalization condition

$$
\sum_{n}\left|a_{n}^{i}\right|^{2} \leq 1
$$

The CLN Form

- In the model-dependent CLN (Caprini, Lellouch, Neubert) form the form factor is expressed as

$$
\mathcal{G}(w)=\mathcal{G}(1)\left(1-8 \rho_{D}^{2} z(w)+\left(51 \rho_{D}^{2}-10\right) z(w)^{2}-\left(252 \rho_{D}^{2}-84\right) z(w)^{3}\right)
$$

where QCD dispersion relations and HQET have been included, $\mathfrak{G} 1$) is the normalization and ρ_{D} is the slope

- This form has been used in previous $\bar{B} \rightarrow D \ell-\bar{v}$ analyses

Binned Fits to U distribution

- The line shapes of signal and background in the U variable distribution are defined as

$$
f_{i}\left(x ; \mu_{i}, \sigma_{L, i}, \sigma_{R, i}, N_{i}\right)=N_{i} \begin{cases}\exp \frac{\left(x-\mu_{i}\right)^{2}}{2 \sigma_{L, i}^{2}}, & \begin{array}{l}
\text { for } x \leq \mu_{i} \\
\text { for } x>\mu_{i} \\
\exp \frac{\left(x-\mu_{i}\right)^{2}}{2 \sigma_{R, i}^{2}},
\end{array} \\
\text { for } x \leq \mu_{i} \\
\text { for } x>\mu_{i}\end{cases}
$$

- For signal we use 4 two-piece Gaussians (2 for the central peak and 2 for the tails on each side of $U=0$
- $\sigma_{L, R, i}$ represent the widths of the two-piece Gaussians
- α_{i} are relative fractions, $\alpha_{0}=1$
- N_{S} is left unconstrained

$$
\mathcal{S}=N_{S}\left(\sum_{i=0,1,2,3} \alpha_{i} \exp \frac{\left(x-\mu_{i}\right)^{2}}{2 \sigma_{L, R, i}^{2}}\right)
$$

- For background we use 2 two-piece Gaussians tails
- $\alpha_{0}=1$

$$
\mathcal{B}=N_{B}\left(\sum_{j=0,1} \alpha_{j} \exp \frac{\left(x-\mu_{j}\right)^{2}}{2 \sigma_{L, R, j}^{2}}\right)
$$

Binned Fits to U distribution cont.

- For fits to the data, normalizations of the signal and background components are always left unconstrained
- For the signal component, the shapes of the tails ($\mu_{\mathrm{i}}, \sigma_{\mathrm{L}, \mathrm{R},}$) for $\mathrm{i}=2,3$ are fixed to values obtained from fit of truth-matched data
- Remaining 9 parameters $\left(\alpha_{1,2,3}, \mu_{0,1}, \sigma_{\mathrm{LR}, 0,1}\right)$ are allowed to vary between (1-к, $1 /(1-$ κ) \times nominal value from truth-matched simulation fit (different κ values between 0 , 5% and 30% were studied)
- For the background component, all seven parameters are allowed to vary between ($1-\kappa, 1 /(1-\kappa) \times$ nominal value from non-truth-matched simulation (background) fit

Unbinned Fits to U distributions

- Measure closeness between $\mathrm{i}^{\text {th }}$ and $\mathrm{j}^{\text {th }}$ event in phase space

$$
g_{i j}^{2}=\sum_{k=1}^{n}\left[\frac{\phi_{k}^{i}-\phi_{k}^{j}}{r_{k}}\right]^{2}
$$

- where $\vec{\phi}$ represents the n independent kinematic variables in phase space and \vec{r} gives corresponding ranges for normalizations ($r_{q 2}=10 \mathrm{GeV} / \mathrm{c}^{2}, r_{\cos \theta}=2$ and $\mathrm{n}=2$)
- In each q^{2} and $\cos \theta_{\ell}$ bin an unbinned fit is performed in the U distribution to extract to the signal $\mathcal{S}_{\mathrm{i}}\left(U_{\mathrm{i}}\right)$ and background $\mathcal{B}_{\mathrm{i}}\left(U_{\mathrm{i}}\right)$ components for each event yielding a weight

$$
\mathcal{Q}_{i}=\frac{S_{i}\left(U_{i}\right)}{\mathcal{S}_{i}\left(U_{i}\right)+\mathcal{B}_{i}\left(U_{i}\right)}
$$

- Now the total signal yield is

$$
y=\sum_{i} \mathcal{Q}_{i}
$$

- Number of events in each q^{2} and $\cos \theta_{\ell}$ bin is ≈ 50

Unbinned Fits to U distributions

- The pdf for detecting an event in the interval $(\phi, \phi+\Delta \phi)$ is

$$
\mathcal{P}(\vec{x}, \phi)=\frac{\frac{\mathrm{d} N(\vec{x}, \phi)}{\mathrm{d} \phi} \eta(\phi) \Delta \phi}{\int \frac{\mathrm{d} N(\vec{x}, \phi)}{\mathrm{d} \phi} \eta(\phi) \mathrm{d} \phi}
$$

- Where $\mathrm{d} N(\vec{x}, \phi) / \mathrm{d} \phi$ is the rate term, $\eta(\phi)$ is the phase-space-dependent efficiency and \vec{x} denotes the set of fit parameters
- The normalization integral constraint (pure signal) yields

$$
\mathcal{N}(\vec{x})=\int \frac{\mathrm{d} N(\vec{x}, \phi)}{\mathrm{d} \phi} \eta(\phi) d \phi=\bar{N}(\vec{x})=N_{d a t a}
$$

where \bar{N} is equal to the measured yield

Likelihood function

- The non-extended likelihood function is
- Taking the logarithm yields

$$
\mathcal{L}(\vec{x})=-\prod_{i=1}^{N_{\text {data }}} \mathcal{P}\left(\vec{x}, \phi_{i}\right)
$$

$$
-\ln \mathcal{L}(\vec{x})=-\sum_{i=1}^{N_{\text {data }}} \mathcal{P}\left(\vec{x}, \phi_{i}\right) \simeq N_{\text {data }} \ln [\mathcal{N}(\vec{x})]-\sum_{i=1}^{N_{\text {data }}} \ln \left[\frac{\mathrm{d} N}{\mathrm{~d} \phi} \eta(\phi)\right]
$$

- Using the approximation

$$
\mathcal{N}=\int \frac{\mathrm{d} N}{\mathrm{~d} \phi} \eta(\phi) \mathrm{d} \phi=\left(\int \mathrm{d} \phi\right)\left\langle\frac{\mathrm{d} N}{\mathrm{~d} \phi} \eta(\phi)\right\rangle
$$

where

$$
\left\langle\frac{\mathrm{d} N}{\mathrm{~d} \phi} \eta(\phi)\right\rangle=\sum_{i=1}^{N_{\mathrm{sim}}^{\mathrm{gen}}} \frac{\mathrm{~d} N}{\mathrm{~d} \phi} \frac{\eta(\phi)}{N_{\mathrm{sim}}^{\mathrm{gen}}}=\sum_{i=1}^{N_{\mathrm{sim}}^{\text {sic }}} \frac{\mathrm{d} N}{\mathrm{~d} \phi} \frac{1}{N_{\mathrm{sim}}^{\mathrm{gen}}}
$$

- In the last step just accepted events are included, $\eta(\phi)$ is either 0 or 1

Likelihood function

- Ignoring term that are not variable in the fit yields

$$
-\ln \mathcal{L}(\vec{x})=N_{\text {data }} \times \ln \left[\sum_{i=1}^{N_{\text {sim }}^{\text {sic }}} \frac{\mathrm{d} N}{\mathrm{~d} \phi}\right]-\sum_{i=1}^{N_{\text {data }}} \ln \left[\frac{\mathrm{d} N}{\mathrm{~d} \phi}\right]
$$

- Including the background subtraction procedure yield

$$
-\ln \mathcal{L}(\vec{x})=\left[\sum_{i=1}^{N_{\text {data }}} \mathcal{Q}_{i}\right] \times \ln \left[\sum_{i=1}^{N_{\text {sim }}^{\text {aco }}} \frac{\mathrm{d} N}{\mathrm{~d} \phi}\right]-\sum_{i=1}^{N_{\text {data }}} \mathcal{Q}_{i} \ln \left[\frac{\mathrm{~d} N}{\mathrm{~d} \phi}\right]
$$

- Since simulation includes model based form factor calculation (ISGW2 for $f_{+}\left(q^{2}\right)$, we need to include weight

$$
\tilde{\mathrm{w}}_{\mathrm{i}}=1 /\left[\frac{\mathrm{d} N}{\mathrm{~d} \phi}\right]
$$

yielding

$$
-\ln \mathcal{L}(\vec{x})=\left[\sum_{i=1}^{N_{\text {deab }}} \mathcal{Q}_{]}\right] \times \ln \left[\sum_{i=1}^{N_{\text {and }}^{\text {aco }}} \tilde{w}_{i} \frac{\mathrm{~d} N}{\mathrm{~d} \phi}\right]-\sum_{i=1}^{N_{\text {ata }}} \mathcal{Q}_{1} \ln \left[\frac{\mathrm{~d} N}{\mathrm{~d} \phi}\right]
$$

Fit Results

Fit parameters for the BGL expansion with $N=2$

fit configuration	$a_{0}^{f_{+}} \times 10$	$a_{1}^{f_{+}}$	$a_{2}^{f_{+}}$	$a_{1}^{f_{0}}$	$a_{2}^{f_{0}}$	$\left\|V_{c b}\right\| \times 10^{3}$	$\chi_{\text {MILC }}^{2}$
BABAR-1, Belle	0.126 ± 0.001	-0.096 ± 0.003	0.352 ± 0.052	-0.059 ± 0.003	0.155 ± 0.049	41.09 ± 1.16	1.15

- Fit parameters for the BGL expansion with $N=3$

variable	value
$a_{0}^{f_{+}} \times 10$	0.126 ± 0.001
$a_{1}^{f_{+}}$	-0.098 ± 0.004
$a_{2}^{f_{+}}$	0.626 ± 0.241
$a_{3}^{f_{+}}$	-3.939 ± 3.194
$a_{1}^{f_{0}}$	-0.061 ± 0.003
$a_{2}^{f_{0}}$	0.435 ± 0.205
$a_{3}^{f_{0}}$	-3.977 ± 2.840
$\left\|V_{\text {cb }}\right\| \times 10^{3}$	40.74 ± 1.18
$\chi_{\text {FNAL }}^{2}$	0.001
$\chi_{\text {Belle }}^{2}$	23.68

G. Eigen, LP23 Melbourne, 18/07/2023

Fit parameters for the CNL expansion

fit configuration	$\mathcal{G}(1)$	ρ_{D}^{2}	$\left\|V_{c b}\right\| \times 10^{3}$	$\chi_{\text {FNAL/MILC }}^{2} \chi_{\text {Belle }}^{2}$	
BABAR-1, Belle	1.056 ± 0.008	1.155 ± 0.023	40.90 ± 1.14	1.04	24.65
BABAR-2, Belle	1.056 ± 0.008	1.156 ± 0.023	40.92 ± 1.14	0.99	24.72
BABAR-3, Belle	1.056 ± 0.008	1.156 ± 0.023	40.92 ± 1.14	1.00	24.71
BABAR-4, Belle	1.056 ± 0.008	1.154 ± 0.023	40.87 ± 1.14	1.09	24.57
BABAR-1	1.053 ± 0.008	1.179 ± 0.027	-	0.53	-

- Reweighted $\bar{B} \rightarrow D \ell-\bar{v}$ branching fraction

Measurement	$\mathcal{B}\left(\bar{B} \rightarrow D \ell^{-} \bar{\nu}_{\ell}\right) \times 10^{2}$	$\left\|V_{c b}\right\| \times 10^{3}$
BABAR-10 [14]	$\mathcal{B}_{B^{0}}=(2.15 \pm 0.11 \pm 0.14)$	40.02 ± 1.76
BABAR-10 [14]	$\mathcal{B}_{B^{+}}=(2.16 \pm 0.08 \pm 0.13)$	38.67 ± 1.41
Belle-16 [15]	$\mathcal{B}_{B^{0}}=(2.33 \pm 0.04 \pm 0.11)$	41.66 ± 1.22
Belle-16 [15]	$\mathcal{B}_{B^{+}}=(2.46 \pm 0.04 \pm 0.12)$	41.27 ± 1.23

Systematic Errors

- Add 3 fit configurations for determining systematics of background subtraction
- BABAR-2, $N_{c}=60$, signal and background shapes locally fixed from simulation
- BABAR-3, $N_{c}=50$, signal are allowed to vary by 5% from simulation
- BABAR-3, $N_{c}=50$, tighter selection criteria ($E_{\text {Extra }}<0.6 \mathrm{GeV}, C L>10^{-6}$)
- Compare resolutions of deviation of reconstructed-to-generated q^{2} and $\cos \theta_{\ell}$ distributions included in the fit and not included in the fit $\longrightarrow \sigma=2.6 \%$ vs 3.4%
- We evaluate the effect of background subtraction

BGL $N=2$	value	CLN	value
$\left\|V_{c b}\right\| \times 10^{3}$	41.10 ± 1.17	$\left\|V_{c b}\right\| \times 10^{3}$	40.90 ± 1.14
$a_{0}^{f_{+}} \times 10$	0.126 ± 0.001	$\mathcal{G}(1)$	1.056 ± 0.008
$a_{1}^{f_{+}}$	-0.096 ± 0.003	ρ_{D}^{2}	1.155 ± 0.023
$a_{2}^{f_{+}}$	0.352 ± 0.053		
$a_{1}^{f_{0}}$	-0.059 ± 0.003		
$a_{2}^{f_{0}}$	0.155 ± 0.050		

$\bar{B} \rightarrow D \tau \bar{v}$ Decay Observables

- The decay rate for $\bar{B} \rightarrow D \tau-\bar{v}$ needs to include the tau mass

$$
\begin{aligned}
& \frac{\mathrm{d} \Gamma^{+}}{\mathrm{d} q^{2}}=\frac{G_{F}^{2}\left|V_{\mathrm{cb}}\right|^{2} \eta_{E W}^{2}}{16 \pi^{3}}\left(1-\frac{m_{\ell}^{2}}{q^{2}}\right)^{2} k \frac{m_{\ell}^{2}}{q^{2}}\left[\frac{k^{2} f_{+}^{2}\left(q^{2}\right)}{3}+\frac{\left(m_{B}^{2}-m_{D}^{2}\right)^{2}}{4 m_{B}^{2}} f_{0}^{2}\left(q^{2}\right)\right] \\
& \frac{\mathrm{d} \Gamma^{-}}{\mathrm{d} q^{2}}=\frac{G_{F}^{2}\left|V_{\mathrm{cb}}\right|^{2} \eta_{E W}^{2}}{24 \pi^{3}}\left(1-\frac{m_{\ell}^{2}}{q^{2}}\right)^{2} k^{3} f_{+}^{2}\left(q^{2}\right)
\end{aligned}
$$

- The +,- indicate the lepton helicity in the W^{*} - rest frame
- The total decay rate is

$$
\frac{\mathrm{d} \Gamma\left(m_{\ell}\right)}{\mathrm{d} q^{2}}=\frac{\mathrm{d} \Gamma^{+}}{\mathrm{d} q^{2}}+\frac{\mathrm{d} \Gamma^{-}}{\mathrm{d} q^{2}}
$$

- The ratio of $\bar{B} \rightarrow D \tau-\bar{v}$ to $\bar{B} \rightarrow D \ell-\bar{v}$ decay rates is given by
$\mathcal{R}(D)=\frac{\int_{m_{\tau}^{2}}^{\left(m_{B}^{2}-m_{D}^{2}\right)} \frac{\mathrm{d} \Gamma\left(m_{\tau}\right)}{\mathrm{d} q^{2}} \mathrm{~d} q^{2}}{\int_{m_{e, \mu}^{2}}^{\left(m_{B}^{2}-m_{D}^{2}\right)} \frac{\mathrm{d} \Gamma\left(m_{e, \mu}\right)}{\mathrm{d} q^{2}} \mathrm{~d} q^{2}}$

