



#### Introduction



The decay  $\overline{B} \rightarrow D\ell^-\overline{\nu}$  proceeds through a simple tree-level diagram and has been studied by many experiments

- The decay proceeds via the vector current
- The decay rate depends on the CKM element  $|V_{cb}|$  and in the limit of neglecting the lepton mass on just one form factor  $f_+(q^2)$
- Measurements of  $|V_{cb}|$  from inclusive b  $\rightarrow c\ell^-\overline{\nu}$  decay and exclusive  $B \rightarrow D^{(*)} \ell^-\overline{\nu}$  decays show a  $3\sigma$  level disagreement



- Using the full data set, BABAR has performed a new study of  $B \rightarrow D\ell^-\bar{\nu}$  by analyzing the process  $e^+e^- \rightarrow Y(4S) \rightarrow B_{tag}\bar{B}_{sig}$ , where  $B_{tag}$  is reconstructed in B hadronic decays and  $B_{sig}$  represents the  $B \rightarrow D\ell^-\bar{\nu}$  signal mode
- Two different form factor parametrizations are employed, the model-independent Boyd-Grinstein-Lebed (BGL) expansion and the model-dependent Caprini-Lellouch-Neubert (CLN) expansion
  Nucl. Phys. B461, 493 (1996)

Nucl.Phys. **B530**, 153 (1998)



# **Analysis Strategy**



- Data sample consist of  $471\times10^6~Y(4S)\rightarrow B\overline{B}$  events (426 fb<sup>-1</sup>) NIM **A726**, 203 (2013)
- $\bullet$  One B is tagged via a hadronic decay ( $D^{(*)0}$ ,  $D^{(*)+}$ ,  $D_{\rm s}^{(*)+}$ ,  $J/\psi$ ) plus up to 5 charged charmless light mesons and 2 neutral mesons
- The reconstruction relies on 2 variables

$$m_{ES} = \sqrt{\frac{1}{4}s - \left|\vec{p}_{tag}^*\right|^2}$$
$$\Delta E = E_{tag}^* - \frac{1}{2}\sqrt{s}$$

 $m_{ES} = \sqrt{\frac{1}{4}s - \left|\vec{p}_{tag}^*\right|^2}$  where  $\vec{p}_{tag}^*$  and  $E_{tag}^*$  are 3-momentum and energy of B<sub>tag</sub> in the CM frame



- $\blacksquare$  Select events with  $m_{\rm ES} > 5.27 \; {\rm GeV}/c^2$  and  $|\Delta E| < 72 \; {\rm MeV}$
- On the signal side we require a D candidate in  $D^0 \to K^-\pi^+$ ,  $K^-\pi^+\pi^0$ ,  $K^-\pi^+\pi^-\pi^-$  and  $D^+ \rightarrow K^- \pi^+ \pi^+$ ,  $K^- \pi^+ \pi^- \pi^0$  plus an  $e^-$  with  $p_e > 200$  MeV/c or a  $\mu$  with  $p_u > 300$  MeV/c → 10 modes
- $\bullet$  Analysis is similar to that of  $B \rightarrow D^* \ell^- \overline{\nu}$ PRL 123, 091801 (2019)



## Analysis Strategy cont.



Determine missing momentum

$$oldsymbol{
ho}_{_{\scriptscriptstyle V}} \equiv oldsymbol{
ho}_{_{
m miss}} = oldsymbol{
ho}_{_{
m e^{+}e^{-}}} - oldsymbol{
ho}_{_{tag}} - oldsymbol{
ho}_{_{\scriptscriptstyle D}} - oldsymbol{
ho}_{_{\scriptscriptstyle \ell}}$$

- For a semileptonic decay with one missing neutrino this is fulfilled
- We use the discriminating variable  $U = E_{\text{miss}}^{**} |\vec{p}_{\text{miss}}^{**}|$  ( $E_{\text{miss}}^{**}$  and  $\vec{p}_{\text{miss}}^{**}$  are v energy and 3-momentum in  $\overline{B}_{\text{sig}}$  rest frame)
- We measure the extra energy in the calorimeter, require  $E_{\text{Extra}}$  ( $\leq$  80 MeV)



- ullet We perform a kinematic fit of the entire event, constraining  $B_{\text{tag}}$ ,  $B_{\text{sig}}$  and D mesons to their nominal masses, constrain B and D decay products to separate vertices
- $\bullet$  In case of multiple candidates that with the lowest  $E_{\text{Extra}}$  is retained
- ullet A second kinematic fit with a U=0 constraint is done to improve the resolution in the variables  $q^2$  and  $\cos\theta_\ell$  (q is the momentum transfer to the  $\ell^-\overline{\nu}$  system and  $\theta_\ell$  is the lepton helicity angle)



# Signal-to-Background Separation



- We use a novel technique to separate signal from background since the background shape varies across phase space
- Primary background is from  $\overline{B} \rightarrow D^* \ell^- \overline{\nu}$  with  $D^* \rightarrow D\pi$  or  $D^* \rightarrow D\gamma$



- ullet Background from charmless B decays and  $q\overline{q}$  continuum is small
- We define pdfs for signal (4 two-piece Gaussians) and background (2 two-piece Gaussians)
- We test the binned fit on the U distribution for the  $K^-\pi^+e^-\overline{\nu}$  mode



# Background Varies across Phase Space



We show that this method works in different regions of cos  $\theta_{\ell}$  and  $q^2$ 

- Binned fits to data in  $K^-\pi^+\pi^+e^-\overline{\nu}$  mode
- Fits describe data well

- Binned fits to data in  $K^-\pi^+\pi^-\pi^+e^-\overline{\nu}$  mode
- Fits describe data well
- Distributions illustrate different background shapes

G. Eigen, LP23 Melbourne, 18/



 $|q^2 - 0.75| < 0.25 \text{ GeV}^2/c^2$ 

U (GeV)



 $|\cos \theta_{\ell}$  - 0.85 |< 0.05



 $|q^2-9.75|<0.25 \text{ GeV}^2/c^2$ 





# Extraction of Signal Weight Factors



- We perform continuous U-variable fits in  $q^2$  and  $\cos \theta_\ell$  regions, selecting 50 events at a time that are closest to a selected event to determine signal and background components from which we determine signal weights for each event
- Signal weight  $Q_i = \frac{S_i(U_i)}{S_i(U_i) + B_i(U_i)}$  and background weight  $1 Q_i = \frac{B_i(U_i)}{S_i(U_i) + B_i(U_i)}$
- We observe 16701 events in all ten modes
- To illustrate how well this procedure works, we show the U variable distributions for different  $q^2$  and  $\cos \theta_\ell$  regions, summing the  $Q_i$  values of all 10 modes
- Red points result from signal weights Q<sub>i</sub> and blue points from background weights (1-Q<sub>i</sub>)





# **Unbinned Angular Fits**



- We require |U| < 50 MeV,  $0.5 \le q^2 \le 10$  GeV<sup>2</sup>/ $c^2$  &  $|\cos \theta_{\ell}| < 0.97$  for the final sample
- We perform ML fits in the  $q^2$ -cos  $\theta_{\ell}$  plane using only signal weights  $Q_i$
- We add two external constraints

PRD 92, 034506 (2015)

- $\bullet$  To set normalization of the form factors, the  $w\rightarrow 1$  region calculations from lattice QCD are added as Gaussian constraints (6  $f_{0,+}(w)$  MILC data points)
- To access  $|V_{cb}|$  the absolute  $q^2$  –differential decay rate data from Belle are also incorporated as Gaussian constraints (40 dΠdw data points) PRD 93, 032006 (2016)
- The total likelihood function is
- $\mathcal{L}(\vec{x})_{\text{ltot}} = -2\ln\mathcal{L}(\vec{x})_{\text{IBABAR}} + \chi^2(\vec{x})_{\text{Belle}} + \chi^2(\vec{x})_{\text{IFNAL/MILC}}$
- We perform fits both with the BGL (N=2,3) and CLN forms
- 1d projections of the nominal fit in comparison with simulation using the BGL form



 $\bullet$  The cos  $\theta_{\ell}$  distribution exhibits the sin<sup>2</sup>  $\theta_{\ell}$  dependence expected in the SM G. Eigen, LP23 Melbourne, 18/07/2023 this indicates that the v reconstruction works well



#### Cross Checks



Besides the nominal fit, we perform 3 other fits with different background subtraction to study systematic uncertainties

• We perform cross checks between backgroundsubtracted data and efficiency-corrected simulations with BGL weighting and ISGW2 weighting for the confidence level of the fit and the E<sub>Extra</sub> distribution

PRD **52**, 2783 (1995)

The relative resolution of the deviation of the reconstructed-to-generated values for the  $q^2$  and  $\cos \theta_{\ell}$  distributions







-0.1

Bkqd. (Data)

U (GeV)

0.2

Comparison of (1-Q) weighted data and background simulation

0.3



# |V<sub>cb</sub>| Results



- $\bullet$  New  $|V_{cb}|$  measurements:
  - PRD 93, 032006 (2016)
  - BABAR+Belle16, BGL:

$$|V_{cb}| = 0.04110 \pm 0.00117$$
 (preliminary)

BABAR+Belle16, CLN

$$|V_{ch}| = 0.04074 \pm 0.00118$$
 (preliminary)

- © Compare with  $|V_{cb}|\mathcal{G}(1)\eta_{EW}$  WA  $(\mathcal{G}(1)=1.0541\pm0.0083, \eta_{EW}=1.0066\pm0050)$   $\eta_{EW}\mathcal{G}(1)|V_{cb}|=0.04361\pm0.00131$  (1.3  $\sigma$  higher)  $\eta_{EW}\mathcal{G}(1)|V_{cb}|_{WA}=0.04153\pm0.00098$
- This agrees well with the result from the inclusive analysis  $\left| \frac{V_{cb}}{V_{cb}} \right| = 0.04219 \pm 0.00078$
- There is some tension with  $|V_{cb}|$  from  $\overline{B} \rightarrow D^* \ell^- \overline{\nu}$   $\left| \frac{V_{cb}}{V_{cb}} \right| = 0.03846 \pm 0.00040 \pm 0.00055$





#### Form Factor Results



- The extracted B→D form factors have improved precision and show good agreement with the full q² B<sub>s</sub>→D<sub>s</sub> HPQCD Collaboration calculation assuming flavor SU(3) symmetry
- Some slight tension exists in the HQET basis at the maximum recoil point,  $q^2 \rightarrow 0$  but otherwise the SU(3) flavor symmetry seems to hold
- So SU(3) flavor symmetry breaking cannot be large
- This should be tested in  $\overline{B} \rightarrow D^* \ell^- \overline{\nu}$  channel



PRD **101**, 074513 (2020)



#### Conclusions



- We performed the first 2-dimensional unbinned angular analysis in the  $q^2$  cos  $\theta_{\ell}$  plane for the  $\overline{B} \rightarrow D\ell^{-}\overline{\nu}$  process
- We used a novel event-wise signal-to-background separation
- The lepton helicity follows a  $\sin^2 \theta_{\ell}$  distribution as expected in the SM; this is shown for the first time confirming that the v reconstruction works well
- For the BGL form we measure  $|V_{cb}|=0.04110\pm0.00117$ , which is closer to the value measured in inclusive  $b\to c\ell^-\overline{\nu}$  decays
- **●** The  $B \rightarrow D$  form factors are found to be consistent with the  $B_s \rightarrow D_s$  form factors predicted by lattice calculations and expected by flavor SU(3) relations
- This BABAR analysis will be submitted to Physical Review D

Thank you for your attention





# Backup Slides



# $\overline{B} \rightarrow D\ell \overline{\nu}$ Decay Rate and Form Factors



 $\blacksquare$  The amplitude for  $\overline{B} \rightarrow D\ell \overline{\nu}$  comes from the vector interaction term

$$\left\langle D \left| \overline{c} \gamma_{\mu} b \right| \overline{B} \right\rangle_{V} = f_{+}(q^{2}) \left( (p_{B} + p_{D})_{\mu} - \frac{(p_{B} + p_{D}) \cdot q}{q^{2}} q_{\mu} \right) + f_{0}(q^{2}) \frac{(p_{B} + p_{D}) \cdot q}{q^{2}} q_{\mu}$$

- $= q = p_B p_D$  is the 4-momentum of the recoiling  $(\ell \overline{\nu})$  system
- $f_+(q^2)$  and  $f_0(q^2)$  are the vector and scalar form factors
- In HQET the form factors are written in terms of B and D 4-velocities v and v'

$$\frac{\left\langle D \left| \bar{c} \gamma_{\mu} b \right| \bar{B} \right\rangle_{V}}{\sqrt{m_{B} m_{D}}} = h_{+}(w)(v + v')_{\mu} + h_{-}(w)(v - v')_{\mu} \qquad \text{where} \qquad w = v \cdot v' = \frac{m_{B}^{2} + m_{D}^{2} - q^{2}}{2m_{B} m_{D}}$$

The two form factors are related

$$f_{+}(q^{2}) = \frac{1}{2\sqrt{r}} \left( (1+r)h_{+}(w) - (1-r)h_{-}(w) \right)$$

$$f_{o}(q^{2}) = \sqrt{r} \left( \frac{w+1}{1+r}h_{+}(w) - \frac{w-1}{1-r}h_{-}(w) \right)$$
where  $r = \frac{m_{D}}{m_{B}}$  and  $f_{+}(0) = f_{0}(0)$ 



# $\overline{B} \rightarrow D\ell \overline{\nu}$ Decay Rate and Form Factors



The differential  $\overline{B} \rightarrow D\ell^-\overline{\nu}$  decay rate is

$$\frac{d\Gamma}{dq^{2}d\cos\theta_{\ell}} = \frac{G_{F}^{2} |V_{cb}|^{2} \eta_{EW}^{2}}{32\pi^{3}} k^{3} |f_{+}(q^{2})|^{2} \sin^{2}\theta_{\ell}$$
 where  $k = m_{D} \sqrt{w^{2} - 1}$  ( $|p_{D}|$  in  $B$  rest frame

where 
$$k = m_D \sqrt{w^2 - 1}$$
 ( $|p_D|$  in B rest frame

• f<sub>+</sub>(q<sup>2</sup>) is connected form factor G(w)

$$G(w) = \frac{4r}{(1+r)^2} f_+(q^2)$$



#### The BGL Form



In the model-independent BGL (Boyd, Grinstein, Lebed) form the form factors are  $f_i(z) = \frac{1}{P_i(z)\phi_i(z)} \sum_{n=0}^{N} a_n^i z^n$  Where i=0,+,  $z(w) = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}}$ , expressed as

$$f_i(z) = \frac{1}{P_i(z)\phi_i(z)} \sum_{n=0}^{N} a_n^i z^n$$

$$z(w) = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}}$$

 $P_i(z)$  are Blaschke factors that remove contributions of bound state  $B_c^{(*)}$  poles,  $\phi_i(z)$  are non-perturbative outer functions,  $a_n^i$  are free parameters and N is the Considered order of expansion

- Use following parameterizations
  - $P_i(z) = 1$

$$\phi_{+}(z) = \frac{1.1213(1+z)^{2}\sqrt{1-z}}{\left[(1+r)(1-z)+2\sqrt{r}(1+z)\right]^{5}} \qquad \phi_{0}(z) = \frac{0.5299(1+z)^{2}(1-z)^{3/2}}{\left[(1+r)(1-z)+2\sqrt{r}(1+z)\right]^{4}}$$

$$\phi_0(z) = \frac{0.5299(1+z)^2(1-z)^{3/2}}{\left[(1+r)(1-z) + 2\sqrt{r}(1+z)\right]^4}$$

The coefficients  $a_n^i$  satisfy the normalization condition

$$\sum_{n} \left| \mathbf{a}_{n}^{i} \right|^{2} \leq 1$$



#### The CLN Form



In the model-dependent CLN (Caprini, Lellouch, Neubert) form the form factor is expressed as

$$\mathcal{G}(w) = \mathcal{G}(1)\left(1 - 8\rho_D^2 z(w) + (51\rho_D^2 - 10)z(w)^2 - (252\rho_D^2 - 84)z(w)^3\right)$$

where QCD dispersion relations and HQET have been included,  $\mathcal{A}$ 1) is the normalization and  $\rho_{D}$  is the slope

• This form has been used in previous  $\overline{B} \rightarrow D\ell - \overline{\nu}$  analyses



#### Binned Fits to *U* distribution



The line shapes of signal and background in the U variable distribution are defined as

$$f_{i}(x; \mu_{i}, \sigma_{L,i}, \sigma_{R,i}, N_{i}) = N_{i} \begin{cases} \exp \frac{(x - \mu_{i})^{2}}{2\sigma_{L,i}^{2}}, & \text{for } x \leq \mu_{i} \\ \exp \frac{(x - \mu_{i})^{2}}{2\sigma_{R,i}^{2}}, & \text{for } x \leq \mu_{i} \end{cases}$$

$$\exp \frac{(x - \mu_{i})^{2}}{2\sigma_{R,i}^{2}}, & \text{for } x \leq \mu_{i} \end{cases}$$

- For signal we use 4 two-piece Gaussians (2 for the central peak and 2 for the tails on each side of U=0
  - $\bullet$   $\sigma_{L,R,i}$  represent the widths of the two-piece Gaussians
  - $\bullet$   $\alpha_i$  are relative fractions,  $\alpha_0=1$
  - N<sub>S</sub> is left unconstrained

$$S = N_{S} \left( \sum_{i=0,1,2,3} \alpha_{i} \exp \frac{(x - \mu_{i})^{2}}{2\sigma_{L,R,i}^{2}} \right)$$

- For background we use 2 two-piece Gaussians tails
  - $\bullet$   $\alpha_0=1$

$$\mathcal{B} = N_B \left( \sum_{j=0,1} \alpha_j \exp \frac{(x - \mu_j)^2}{2\sigma_{L,R,j}^2} \right)$$



#### Binned Fits to *U* distribution cont.



- For fits to the data, normalizations of the signal and background components are always left unconstrained
- $\bullet$  For the signal component, the shapes of the tails ( $\mu_i$ ,  $\sigma_{L,R,i}$ ) for i=2,3 are fixed to values obtained from fit of truth-matched data
- Remaining 9 parameters  $(\alpha_{1,2,3},\mu_{0,1},\sigma_{L,R,0,1})$  are allowed to vary between  $(1-\kappa, 1/(1-\kappa)\times nominal value from truth-matched simulation fit (different <math>\kappa$  values between 0, 5% and 30% were studied)
- For the background component, all seven parameters are allowed to vary between  $(1-\kappa, 1/(1-\kappa)\times nominal value from non-truth-matched simulation (background) fit$



#### Unbinned Fits to U distributions



Measure closeness between ith and jth event in phase space

$$g_{ij}^2 = \sum_{k=1}^n \left[ \frac{\phi_k^i - \phi_k^j}{r_k} \right]^2$$

- where  $\vec{\phi}$  represents the n independent kinematic variables in phase space and  $\vec{r}$  gives corresponding ranges for normalizations ( $r_{q2}$  =10 GeV/c<sup>2</sup>,  $r_{\cos\theta}$ =2 and n=2)
- In each  $q^2$  and  $\cos \theta_\ell$  bin an unbinned fit is performed in the U distribution to extract to the signal  $S_i(U_i)$  and background  $B_i(U_i)$  components for each event yielding a weight

$$Q_i = \frac{S_i(U_i)}{S_i(U_i) + B_i(U_i)}$$

Now the total signal yield is

$$y = \sum_{i} Q_{i}$$

• Number of events in each  $q^2$  and  $\cos \theta_{\ell}$  bin is  $\approx 50$ 



#### Unbinned Fits to *U* distributions



• The pdf for detecting an event in the interval  $(\phi, \phi + \Delta \phi)$  is

$$\mathcal{P}(\vec{x},\phi) = \frac{\frac{dN(\vec{x},\phi)}{d\phi} \eta(\phi) \Delta \phi}{\int \frac{dN(\vec{x},\phi)}{d\phi} \eta(\phi) d\phi}$$

- Where  $dN(\vec{x}, \phi)/d\phi$  is the rate term,  $\eta(\phi)$  is the phase-space-dependent efficiency and  $\vec{x}$  denotes the set of fit parameters
- The normalization integral constraint (pure signal) yields

$$\mathcal{N}(\vec{x}) = \int \frac{dN(\vec{x},\phi)}{d\phi} \eta(\phi) d\phi = \overline{N}(\vec{x}) = N_{data}$$

where  $\overline{N}$  is equal to the measured yield



## Likelihood function



The non-extended likelihood function is

$$\mathcal{L}(\vec{x}) = -\prod_{i=1}^{N_{\text{data}}} \mathcal{P}(\vec{x}, \phi_i)$$

Taking the logarithm yields

$$-\ln \mathcal{L}(\vec{x}) = -\sum_{i=1}^{N_{\text{data}}} \mathcal{P}(\vec{x}, \phi_i) \simeq N_{\text{data}} \ln \left[ \mathcal{N}(\vec{x}) \right] - \sum_{i=1}^{N_{\text{data}}} \ln \left[ \frac{dN}{d\phi} \eta(\phi) \right]$$

Using the approximation

$$\mathcal{N} = \int \frac{dN}{d\phi} \eta(\phi) d\phi = \left( \int d\phi \right) \left\langle \frac{dN}{d\phi} \eta(\phi) \right\rangle$$

where

$$\left\langle \frac{\mathsf{d} \mathcal{N}}{\mathsf{d} \phi} \eta(\phi) \right\rangle = \sum_{i=1}^{N_{\mathsf{sim}}^{\mathsf{gen}}} \frac{\mathsf{d} \mathcal{N}}{\mathsf{d} \phi} \frac{\eta(\phi)}{N_{\mathsf{sim}}^{\mathsf{gen}}} = \sum_{i=1}^{N_{\mathsf{sim}}^{\mathsf{acc}}} \frac{\mathsf{d} \mathcal{N}}{\mathsf{d} \phi} \frac{1}{N_{\mathsf{sim}}^{\mathsf{gen}}}$$

• In the last step just accepted events are included,  $\eta(\phi)$  is either 0 or 1



# Likelihood function



Ignoring term that are not variable in the fit yields

$$-\ln \mathcal{L}(\vec{x}) = N_{\text{data}} \times \ln \left[ \sum_{i=1}^{N_{\text{sim}}^{\text{acc}}} \frac{dN}{d\phi} \right] - \sum_{i=1}^{N_{\text{data}}} \ln \left[ \frac{dN}{d\phi} \right]$$

Including the background subtraction procedure yield

$$-\ln \mathcal{L}(\vec{x}) = \left[\sum_{i=1}^{N_{\text{data}}} \mathcal{Q}_i\right] \times \ln \left[\sum_{i=1}^{N_{\text{sim}}^{\text{acc}}} \frac{dN}{d\phi}\right] - \sum_{i=1}^{N_{\text{data}}} \mathcal{Q}_i \ln \left[\frac{dN}{d\phi}\right]$$

Since simulation includes model based form factor calculation (ISGW2 for  $f_+(q^2)$ , we need to include weight

$$\tilde{\mathbf{w}}_{i} = 1 / \left[ \frac{dN}{d\phi} \right]$$

yielding

$$-\ln \mathcal{L}(\vec{x}) = \left[\sum_{i=1}^{N_{data}} \mathcal{Q}_{i}\right] \times \ln \left[\sum_{i=1}^{N_{sim}^{acc}} \tilde{w}_{i} \frac{dN}{d\phi}\right] - \sum_{i=1}^{N_{data}} \mathcal{Q}_{i} \ln \left[\frac{dN}{d\phi}\right]$$



#### Fit Results



#### • Fit parameters for the BGL expansion with *N*=2

| fit configuration | · ·               | $a_1^{f_+}$        | $a_2^{f_+}$       | $a_1^{f_0}$        | $a_2^{f_0}$       | $ V_{cb}  \times 10^3$ |      |       |
|-------------------|-------------------|--------------------|-------------------|--------------------|-------------------|------------------------|------|-------|
| BABAR-1, Belle    | $0.126 \pm 0.001$ | $-0.096 \pm 0.003$ | $0.352 \pm 0.052$ | $-0.059 \pm 0.003$ | $0.155 \pm 0.049$ | $41.09 \pm 1.16$       | 1.15 | 24.50 |
| BABAR-2, Belle    | $0.126\pm0.001$   | $-0.096 \pm 0.003$ | $0.352\pm0.052$   | $-0.059 \pm 0.003$ | $0.155\pm0.049$   | $41.12\pm1.16$         | 1.17 | 24.54 |
| BABAR-3, Belle    | $0.126\pm0.001$   | $-0.096 \pm 0.003$ | $0.350\pm0.052$   | $-0.059 \pm 0.003$ | $0.153\pm0.049$   | $41.12\pm1.16$         | 1.18 | 24.55 |
| BABAR-4, Belle    | $0.126\pm0.001$   | $-0.096 \pm 0.003$ | $0.352\pm0.052$   | $-0.059 \pm 0.003$ | $0.156\pm0.049$   | $41.05\pm1.17$         | 1.14 | 24.45 |
| BABAR-1           | $0.126\pm0.001$   | $-0.097 \pm 0.003$ | $0.334\pm0.063$   | $-0.059 \pm 0.003$ | $0.133\pm0.062$   | -                      | 1.55 | -     |

#### • Fit parameters for the BGL expansion with *N*=3

| variable                 | value              |
|--------------------------|--------------------|
| $a_0^{f_+} \times 10$    | $0.126\pm0.001$    |
| $a_1^{f_+}$              | $-0.098 \pm 0.004$ |
| $a_2^{\overline{f}_+}$   | $0.626\pm0.241$    |
| $a_3^{\overline{f_+}}$   | $-3.939 \pm 3.194$ |
| $a_1^{f_0}$              | $-0.061 \pm 0.003$ |
| $a_{2}^{f_{0}}$          | $0.435 \pm 0.205$  |
| $a_3^{f_0}$              | $-3.977 \pm 2.840$ |
| $ V_{cb}  \times 10^3$   | $40.74 \pm 1.18$   |
| $\chi^2_{\rm FNAL/MILC}$ | 0.001              |
| $\chi^2_{ m Belle}$      | 23.68              |
|                          |                    |

#### Fit parameters for the CNL expansion

| 6t configuration  | <b>G</b> (1)      | 2                 | W. 1 v 103           | 2                       | 2     |
|-------------------|-------------------|-------------------|----------------------|-------------------------|-------|
| fit configuration | 2 (-)             | $ ho_D^z$         | $ V_{cb}  \times 10$ | $\chi^2_{ m FNAL/MILC}$ |       |
| BABAR-1, Belle    | $1.056 \pm 0.008$ | $1.155 \pm 0.023$ | $40.90 \pm 1.14$     | 1.04                    | 24.65 |
| BABAR-2, Belle    | $1.056 \pm 0.008$ | $1.156 \pm 0.023$ | $40.92\pm1.14$       | 0.99                    | 24.72 |
| BABAR-3, Belle    | $1.056 \pm 0.008$ | $1.156\pm0.023$   | $40.92\pm1.14$       | 1.00                    | 24.71 |
| BABAR-4, Belle    | $1.056\pm0.008$   | $1.154\pm0.023$   | $40.87 \pm 1.14$     | 1.09                    | 24.57 |
| BABAR-1           | $1.053\pm0.008$   | $1.179\pm0.027$   | _                    | 0.53                    | _     |

#### $\blacksquare$ Reweighted $\overline{B} \rightarrow D\ell^-\overline{\nu}$ branching fraction

| Measurement   | $\mathcal{B}(\overline{B} \to D\ell^-\overline{\nu}_\ell) \times 10^2$ | $ V_{cb}  \times 10^3$ |
|---------------|------------------------------------------------------------------------|------------------------|
| BABAR-10 [14] | $\mathcal{B}_{B^0} = (2.15 \pm 0.11 \pm 0.14)$                         | $40.02 \pm 1.76$       |
| BABAR-10 [14] | $\mathcal{B}_{B^+} = (2.16 \pm 0.08 \pm 0.13)$                         | $38.67 \pm 1.41$       |
| Belle-16 [15] | $\mathcal{B}_{B^0} = (2.33 \pm 0.04 \pm 0.11)$                         | $41.66\pm1.22$         |
| Belle-16 [15] | $\mathcal{B}_{B^+} = (2.46 \pm 0.04 \pm 0.12)$                         | $41.27\pm1.23$         |
|               |                                                                        |                        |



# Systematic Errors



- Add 3 fit configurations for determining systematics of background subtraction
  - BABAR-2, N<sub>c</sub>=60, signal and background shapes locally fixed from simulation
  - BABAR-3, N<sub>c</sub>=50, signal are allowed to vary by 5% from simulation
  - BABAR-3,  $N_c$ =50, tighter selection criteria ( $E_{\text{Extra}}$ < 0.6 GeV, CL > 10-6)
- Compare resolutions of deviation of reconstructed-to-generated  $q^2$  and  $\cos \theta_{\ell}$  distributions included in the fit and not included in the fit  $\sigma$ =2.6% vs 3.4%
- We evaluate the effect of background subtraction

| $\overline{BGL\ N=2}$  | value              | CLN                    | value            |
|------------------------|--------------------|------------------------|------------------|
| $ V_{cb}  \times 10^3$ | $41.10 \pm 1.17$   | $ V_{cb}  \times 10^3$ | $40.90 \pm 1.14$ |
| $a_0^{f_+} \times 10$  | $0.126\pm0.001$    | $\mathcal{G}(1)$       | $1.056\pm0.008$  |
| $a_1^{f_+}$            | $-0.096 \pm 0.003$ | $ ho_D^2$              | $1.155\pm0.023$  |
| $a_{2}^{f+}$           | $0.352 \pm 0.053$  |                        |                  |
| $a_{f 1}^{f_0}$        | $-0.059 \pm 0.003$ |                        |                  |
| $a_2^{f_0}$            | $0.155 \pm 0.050$  |                        |                  |







# $\overline{B} \rightarrow D \tau \overline{\nu}$ Decay Observables



• The decay rate for  $\overline{B} \rightarrow D\tau \overline{\nu}$  needs to include the tau mass

$$\frac{\mathrm{d}\Gamma^{+}}{\mathrm{d}q^{2}} = \frac{G_{F}^{2} \left| V_{cb} \right|^{2} \eta_{EW}^{2}}{16\pi^{3}} \left( 1 - \frac{m_{\ell}^{2}}{q^{2}} \right)^{2} k \frac{m_{\ell}^{2}}{q^{2}} \left[ \frac{k^{2} f_{+}^{2} (q^{2})}{3} + \frac{(m_{B}^{2} - m_{D}^{2})^{2}}{4m_{B}^{2}} f_{0}^{2} (q^{2}) \right]$$

$$\frac{d\Gamma^{-}}{dq^{2}} = \frac{G_{F}^{2} |V_{cb}|^{2} \eta_{EW}^{2}}{24\pi^{3}} \left(1 - \frac{m_{\ell}^{2}}{q^{2}}\right)^{2} k^{3} f_{+}^{2} (q^{2})$$

- The +,- indicate the lepton helicity in the W\*- rest frame
- The total decay rate is  $\frac{d\Gamma(m_{\ell})}{dq^2} = \frac{d\Gamma^+}{dq^2} + \frac{d\Gamma^-}{dq^2}$
- The ratio of  $\overline{B} \rightarrow D\tau \overline{\nu}$  to  $\overline{B} \rightarrow D\ell \overline{\nu}$  decay rates is given by

$$\mathcal{R}(D) = \frac{\int_{m_{\tau}^{2}}^{(m_{B}^{2} - m_{D}^{2})} \frac{d\Gamma(m_{\tau})}{dq^{2}} dq^{2}}{\int_{m_{e,\mu}^{2}}^{(m_{B}^{2} - m_{D}^{2})} \frac{d\Gamma(m_{e,\mu})}{dq^{2}} dq^{2}}$$