Latest results from the NA62 experiment at CERN: precision measurements and searches in beam-dump mode

Francesco Brizioli (CERN)

francesco.brizioli@cern.ch
on behalf of the NA62 Collaboration

31st International Symposium on Lepton Photon Interactions at High Energies

Melbourne (AU), July 18, 2023

The NA62 experiment at CERN: the charged kaon factory

- NA62 is located in the CERN North Area, exploiting a 400 GeV/c proton beam extracted from the SPS accelerator
- Main goal: measurement of $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$
- Full detector installation completed in 2016
- Physics runs in 2016, 2017 and 2018 (Run 1)
- Result from full Run 1 [JHEP 06 (2021) 093]: $\mathcal{B}^{\rm NA62}(\mathcal{K}^+ \to \pi^+ \nu \bar{\nu}) = (1.06^{+0.40}_{-0.34 {
 m stat}} \pm 0.09_{
 m syst}) imes 10^{-10}$ 3.4 σ significance
- Data taking resumed in 2021, after CERN LS2, approved until CERN LS3

In this talk:

- Precision measurements: $K^+ \to \pi^0 e^+ \nu \gamma$, $K^+ \to \pi^+ \mu^+ \mu^-$, $K^+ \to \pi^+ \gamma \gamma$
- Searches in beam-dump mode: $A' \rightarrow \mu^+\mu^-$, $A' \rightarrow e^+e^-$

NA62 beam and detector [2017 JINST 12 P05025]

- SPS beam: 400 GeV/c proton on beryllium target
- Secondary hadron 75 GeV/c beam
- 70% pions, 24% protons, 6% kaons
- Nominal beam particle rate (at GTK3): 750 MHz
- Average beam particle rate during 2018 data-taking: 450 — 500 MHz

- KTAG: Cherenkov threshold counter
- GTK: Si pixel beam tracker
- CHANTI: stations of plastic scintillator bars
- LAV: lead glass ring calorimeters
- STRAW: straw magnetic spectrometer
- RICH: Ring Imaging Cherenkov counter
- MUV0: off-acceptance plane of scintillator pads

- O CHOD: planes of scintillator pads and slabs
- IRC: inner ring shashlik calorimeter
- LKr: electromagnetic calorimeter filled with liquid krypton
- MUV1.2: hadron calorimeter
- MUV3: plane of scintillator pads for muon veto
- HASC: near beam lead-scintillator calorimeter
- SAC: small angle shashlik calorimeter

$K^+ \to \pi^0 e^+ \nu \gamma$ analysis [arXiv: 2304.12271 (2023), submitted to JHEP]

- Decay described in ChPT as direct emission, inner bremsstrahlung and their interference
- $\mathcal{B}(K^+ \to \pi^0 e^+ \nu \gamma)$ strongly **depends on** E_{γ} and $\theta_{e\gamma}$ cuts in K^+ rest frame
- Three kinematic ranges considered (defined by E_{γ} and $\theta_{e\gamma} \to \mathsf{table\ below})$
- Measure normalized $\mathcal{B}(K^+ \to \pi^0 e^+ \nu \gamma)$ in ranges $i = \{1, 2, 3\}$:

$$R_{j} = rac{\mathcal{B}(K^{+}
ightarrow \pi^{0} \, \mathrm{e}^{+}
u \gamma \mid E_{\gamma}^{j}, heta_{\mathrm{e}\gamma}^{j})}{\mathcal{B}(K^{+}
ightarrow \pi^{0} \, \mathrm{e}^{+}
u (\gamma))}$$

• Test of T-conservation thanks to T-odd observable ξ and its asymmetry:

$$\xi = \frac{\vec{p}_{\gamma} \cdot (\vec{p}_{e} \times \vec{p}_{\pi})}{(M_{K} \cdot c)^{3}}, \ A_{\xi} = \frac{N_{\xi > 0} - N_{\xi < 0}}{N_{\xi > 0} + N_{\xi < 0}}$$

Signal selection:

- Reconstruct and match K^+ and e^+ tracks
- Reconstruct $\pi^0 \to \gamma \gamma$ as two LKr clusters
- Radiative γ identified as isolated LKr cluster
- Kinematic constratint with the observable: $m_{\text{miss}}^2 = (P_K - P_e - P_{\pi^0} - P_{\gamma})^2$
- Minimal differences in signal and normalization selections, only related to the radiative photon ⇒ reduced systematic effects

	State of the art
F ^j A ^j	$O(n^6)$ ChPT

	$E_{\gamma}^{j}, heta_{e\gamma}^{j}$ $\mathcal{O}(p^{6})$ ChPT		ISTRA+	OKA
	, ,	[EPJ C 50 (2007)]	[PAN 70 (2007)]	[EPJ C 81 (2021)]
$R_1 imes 10^2$	$E_{\gamma} > 10$ MeV, $ heta_{e\gamma} > 10^{\circ}$	1.804 ± 0.021	$1.81 \pm 0.03 \pm 0.07$	$1.990 \pm 0.017 \pm 0.021$
$R_2 \times 10^2$	$E_{\gamma} >$ 30 MeV, $\theta_{e\gamma} >$ 20 $^{\circ}$	0.640 ± 0.008	$0.63 \pm 0.02 \pm 0.03$	$0.587 \pm 0.010 \pm 0.015$
$R_3 \times 10^2$	$E_{\gamma} > 10$ MeV, $0.6 < \cos heta_{e\gamma} < 0.9$	0.559 ± 0.006	$0.47 \pm 0.02 \pm 0.03$	$0.532 \pm 0.010 \pm 0.012$

$K^+ \to \pi^0 e^+ \nu \gamma$ results [arXiv: 2304.12271 (2023), submitted to JHEP]

 $N^{obs} = 1.3 \times 10^5$ with relative bkg contamination < 1%

		range 1	range 2	range 3
ſ	$R \times 10^2$	$1.715 \pm 0.005_{\rm stat} \pm 0.010_{\rm syst}$	$0.609 \pm 0.003_{\rm stat} \pm 0.006_{\rm syst}$	$0.533 \pm 0.003_{\rm stat} \pm 0.004_{\rm syst}$
ĺ	$A_{\xi} imes 10^2$	$-0.1\pm0.3_{\rm stat}\pm0.2_{\rm syst}$	$-0.3\pm0.4_{\rm stat}\pm0.3_{\rm syst}$	$-0.9 \pm 0.5_{\rm stat} \pm 0.4_{\rm syst}$

- NA62 measurements of R_j smaller than $\mathcal{O}(p^6)$ ChPT by 5% relative (disagreement: 3 std deviations)
- Improvement on experimental precision of R_i measurements by a factor > 2

$K^+ o \pi^+ \mu^+ \mu^-$ analysis [JHEP 11 (2022) 011]

$$K^{\pm}
ightarrow \pi^{\pm} \mathit{I}^{+} \mathit{I}^{-}$$
 decays $(\mathit{I} = e, \mu)$

- Flavour changing neutral current processes
- Long distance dominated, mediated by virtual photon exchange: $K^\pm \to \pi^\pm \gamma^* \to \pi^\pm l^+ l^-$
- Main kinematic variable $z = m_{l+l-}^2 / m_K^2$
- Form factor of $K^\pm \to \pi^\pm \gamma^*$ transition $\mathbf{W}(\mathbf{z})$ parametrized in ChPT at $\mathcal{O}(\rho^6)$ as $W(z) = (a_+ + zb_+)G_F m_K^2 + W^{\pi\pi}(z)$

with real parameters a_+ , b_+ and (known) complex function $W^{\pi\pi}(z)$

- Ideal for test of lepton flavour universality
- Measure model independent $\mathcal{B}(K^+ \to \pi^+ \mu^+ \mu^-)$
- Measure $|W(z)|^2$ from $d\Gamma(z)/dz$ distribution and determine form factor parameters a_+, b_+ (reweighting $K^+ \to \pi^+ \mu^+ \mu^-$ MC)
- Signal selection: three tracks identified as $\pi^+\mu^+\mu^-$, kinematic cuts suppressing $K_{3\pi}$ events
- Normalization channel to measure N_K decays: $K^+ \to \pi^+ \pi^+ \pi^-$. Minimal differences in event selections to **reduce systematic effects**

$K^+ \to \pi^+ \mu^+ \mu^-$ results [JHEP 11 (2022) 011]

 $N^{obs} = 27679$ with relative bkg contamination < 0.1%

$$a_{+} = -0.575 \pm 0.013, \ b_{+} = -0.722 \pm 0.043,$$

$$\mathcal{B}(K^+ o \pi^+ \mu^+ \mu^-) = (9.15 \pm 0.08) \times 10^{-8} \text{ at } 68\% \text{ CL}$$

$K^+ \to \pi^+ \gamma \gamma$ analysis

- Crucial test of Chiral Perturbation Theory
- Main kinematic variable: $z = \left(\frac{m_{\gamma\gamma}}{m_K}\right)^2$
- Branching fraction $\mathcal{B}(K^+ \to \pi^+ \gamma \gamma)$ parametrized in ChPT by an unknown real parameter \hat{c}
- Branching fraction and \hat{c} depend on several **external** parameters (fixed in this analysis, but recently updated \rightarrow will be accounted for in the final result)
- Signal selection: single positive track identified as π^+ matched with a K^+ track, two γ clusters in LKr. Signal region: z>0.25
- Normalization channel to measure N_K decays: $K^+ \to \pi^+ \pi^0$. Minimal differences in event selections to reduce systematic effects
- Main background source: cluster merging in calorimeter ($K^+ \to \pi^+ \pi^0 \gamma$, $\pi^0 \to \gamma \gamma$ or $K^+ \to \pi^+ \pi^0 \pi^0$, $\pi^0 \to \gamma \gamma$)

• \hat{c} obtained by reweighting of $K^+ \to \pi^+ \gamma \gamma$ MC and performing binned max-likelihood fit

$K^+ \to \pi^+ \gamma \gamma$ preliminary results (paper in preparation)

$$N^{obs} = 4039, \ N^{exp}_{bkg} = 393 \pm 20$$

$$\hat{c} = 1.713 \pm 0.075_{\mathrm{stat}} \pm 0.037_{\mathrm{syst}}$$

$${\cal B}({\cal K}^+ o \pi^+ \gamma \gamma) = (9.73 \pm 0.17_{
m stat} \pm 0.08_{
m syst}) imes 10^{-7}$$
 at 68% CL

$A' \rightarrow \mu^+ \mu^-$ in beam-dump [arXiv: 2303.08666 (2023), submitted to JHEP]

- Beam dump mode: 3.2 m Cu-Fe collimators (TAXes) used as a target
- ullet In 2021, NA62 collected (1.40 \pm 0.28) imes 10¹⁷ POT
- ullet Search for feebly interacting dark photon (with free mass and coupling ϵ) produced in interaction with TAXes
- Signal selection: $\mu^+\mu^-$ vertex reconstructed within the NA62 decay region and pointing back to the proton beam interaction point at the TAXes.
- Main background: combinatorial from random superposition of two uncorrelated "halo" muons
- Bkg estimated selecting single tracks in a data sample orthogonal to the one used for the analysis: track pairs are artificially built to emulate a random superposition and reweighted

Bkg distributions - SR and CR masked

$$N_{bkg}^{exp}(CR) = 0.17 \pm 0.02, \ N_{bkg}^{exp}(SR) = 0.016 \pm 0.002$$

$A' \rightarrow \mu^+ \mu^-$: results [arXiv: 2303.08666 (2023), submitted to JHEP]

1 event observed in SR, counting experiment with 2.4σ global significance

- \bullet Limits of previous experiments extended in the dark photon mass range 215–550 MeV/ c^2 for coupling constants of the order of 10^{-6}
- \bullet Result also interpreted in terms of the emission of axion-like particles in a model-independent approach, improving on previous limits for masses below 280 MeV/ c^2

$A' ightarrow e^+ e^-$: preliminary results (paper in preparation)

- $N_{bkg}^{exp}(CR) = 0.0097_{-0.009}^{+0.049}$ at 90% CL, $N_{bkg}^{exp}(SR) = 0.0094_{-0.009}^{+0.049}$ at 90% CL
- No events observed
- ExIcusion limits combined with $A' \to \mu^+ \mu^-$
- Limits of previous experiments extended for dark photon mass above 20 MeV/ c^2

Conclusions

- Precision measurements from NA62 Run 1 data, with sizable improvements with respect to the state the art:
 - $K^+ \rightarrow \pi^0 e^+ \nu \gamma$
 - $K^{+} \to \pi^{+} \mu^{+} \mu^{-}$
 - $K^+ \to \pi^+ \gamma \gamma$
- Searches in beam-dump mode from NA62 2021 data, with exclusion limits extended with respect to previous experiments:
 - $A' \rightarrow \mu^+ \mu^-$
 - $A' \rightarrow e^+e^-$
- NA62 physics Run 2 ongoing, until CERN LS3

SPARES

 $K^+ \to \pi^0 e^+ \nu \gamma$ analysis: error budget [arXiv: 2304.12271 (2023), submitted to JHEP]

	$\delta R_1/R_1$	$\delta R_2/R_2$	$\delta R_3/R_3$
Statistical	0.3%	0.4%	0.5%
Limited MC sample size	0.2%	0.4%	0.4%
Background estimation	0.1%	0.2%	0.1%
LKr response modelling	0.4%	0.5%	0.4%
Photon veto correction	0.3%	0.4%	0.3%
Theoretical model	0.1%	0.5%	0.1%
Total systematic	0.6%	0.9%	0.7%
Total	0.7%	1.0%	0.8%

$K^+ \to \pi^+ \mu^+ \mu^-$: decay width and form factors [JHEP 11 (2022) 011]

$K^+ \rightarrow \pi^+ \mu^+ \mu^-$ analysis: error budget [JHEP 11 (2022) 011]

	δa_+	δb_{+}	$\delta \mathcal{B}_{\pi\mu\mu} \times 10^8$
Statistical uncertainty	0.012	0.040	0.06
Trigger efficiency	0.002	0.008	0.02
Reconstruction and particle identification	0.002	0.007	0.02
Size of the simulated $K_{\pi\mu\mu}$ sample	0.002	0.007	0.01
Beam and accidental activity simulation	0.001	0.002	0.01
Background	0.001	0.001	
Total systematic uncertainty	0.003	0.013	0.03
$K_{3\pi}$ branching fraction	0.001	0.003	0.04
$K_{\pi\mu\mu}$ radiative corrections	0.003	0.009	0.01
Parameters α_+ and β_+	0.001	0.006	
Total external uncertainty	0.003	0.011	0.04
Total uncertainty	0.013	0.043	0.08

$K^+ o \pi^+ \gamma \gamma$ analysis: error budget

	$\delta \hat{c}_6$	δ <i>®</i> ×10 ⁷	
Cluster merging	0.029	0.06	
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$ background	0.003	< 0.01	
MC background stat.	0.013	0.03	
z resolution	< 0.001	< 0.01	
LKr energy calibration	0.018	0.04	
Trigger emulation	0.001	< 0.01	
Total error	0.037	0.08	
Ĉ ₆	1.713±0.075 _{stat.} ±0.037 _{syst.}		
$\mathscr{B}(K^+ \to \pi^+ \gamma \gamma) \times 10^7$	9.73±0.17 _{stat.} ±0.08 _{syst.}		

NA62 in beam-dump mode: scheme

The physics case: $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$

- $\bar{s} \to \bar{d}\nu\bar{\nu}$ transition: flavour changing neutral current process (GIM mechanism) with high CKM suppression
- Clean theoretical prediction: short distance contributions
- Hadronic matrix elements: obtained from $K^+ o \pi^0 I^+ \nu$ (K_{I3}) measurements and SU(2) isospin symmetry

Standard Model prediction [Buras et al., JHEP11(2015)033]

$$\mathcal{B}^{SM}(K^+ \to \pi^+ \nu \bar{\nu}) = (0.84 \pm 0.10) \cdot 10^{-10}$$

main uncertainty due to CKM elements knowledge:

$$\mathcal{B}^{SM}(K^+ \to \pi^+ \nu \bar{\nu}) = (0.839 \pm 0.030) \cdot 10^{-10} \cdot \left(\frac{|V_{cb}|}{40.7 \cdot 10^{-3}}\right)^{2.8} \cdot \left(\frac{\gamma}{73.2^{\circ}}\right)^{0.74}$$

$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ in the SM

Standard Model prediction [Buras et al., JHEP11(2015)033]

$$\mathcal{B}^{SM}(K^+ \to \pi^+ \nu \bar{\nu}) = (0.84 \pm 0.10) \cdot 10^{-10}$$

main uncertainty due to CKM elements knowledge:

$$\mathcal{B}^{SM}(K^+ \to \pi^+ \nu \bar{\nu}) = (0.839 \pm 0.030) \cdot 10^{-10} \cdot \left(\frac{|V_{cb}|}{40.7 \cdot 10^{-3}}\right)^{2.8} \cdot \left(\frac{\gamma}{73.2^{\circ}}\right)^{0.74}$$

$K \to \pi \nu \bar{\nu}$ and the unitarity triangle

Standard Model calculation [Buras et al., JHEP11(2015)033]

$$\mathcal{B}(K^{+} \to \pi^{+} \nu \bar{\nu}) = \kappa_{+} (1 + \Delta_{EM}) \cdot \left[\left(\frac{\Im(\lambda_{t})}{\lambda^{5}} X(x_{t}) \right)^{2} + \left(\frac{\Re(\lambda_{c})}{\lambda} P_{c}(X) + \frac{\Re(\lambda_{t})}{\lambda^{5}} X(x_{t}) \right)^{2} \right]$$

$$\mathcal{B}(K_{L} \to \pi^{0} \nu \bar{\nu}) = \kappa_{L} \cdot \left(\frac{\Im(\lambda_{t})}{\lambda^{5}} X(x_{t}) \right)^{2}$$

The $K^+ \to \pi^+ \nu \bar{\nu}$ decay beyond the Standard Model

New Physics search, \mathcal{B} sensitive to the highest mass scales

New Physics models for $K \to \pi \nu \bar{\nu}$

MFV; Simplified Z, Z'; LFU violation; Custodial Randall-Sundrum; MSSM; Littlest Higgs with T-parity; Leptoquarks.

Experimental status before NA62

BNL E787/E949 experiments

[Phys. Rev. D 77, 052003 (2008)] - [Phys. Rev. D 79, 092004 (2009)]

- Kaon decay-at-rest technique
- ullet sensitivity for ~ 1 SM signal event
- 7 events observed in signal regions
- statistical reweighing procedure to take into account the background

$$\mathcal{B}^{BNL}(K^+ \to \pi^+ \nu \bar{\nu}) = (1.73^{+1.15}_{-1.05}) \cdot 10^{-10}$$

NA62: the experimental strategy

Keystones

- decay-in-flight technique $(P_K = 75 \text{ GeV/c})$
- main kinematic variable: $m_{miss}^2 = (P_K P_{\pi})^2$
- pion momentum range: [15; 45] GeV/c
- charged particle identification
- muon and photon rejection
- signal and control kinematic regions blinded during the analysis

Required performance

- time coincidence: O(100 ps)
- kinematic rejection: $O(10^4)$
- muon rejection: > 10⁷
- π^0 rejection: $> 10^7$

K^+ main (background) decays

Decay channel Branching Ratio	
$K^+ \rightarrow \mu^+ \nu \ (K_{\mu 2})$	$(63.56 \pm 0.11) \cdot 10^{-2}$
$K^+ \to \pi^+ \pi^0 (K_{2\pi})$	$(20.67 \pm 0.08) \cdot 10^{-2}$
$K^+ \to \pi^+ \pi^+ \pi^- (K_{3\pi})$	$(5.583 \pm 0.024) \cdot 10^{-2}$
$K^{+} \rightarrow \pi^{+}\pi^{-}e^{+}\nu \ (K_{e4})$	$(4.247 \pm 0.024) \cdot 10^{-5}$

Beam particle tagging: KTAG

KTAG: a Cherenkov threshold counter.

- Filled with nitrogen (N_2) at 1.75 bar at room temperature.
- Geometrically aligned with the beam.
- Time resolution: $\simeq 70 \ ps$
- Kaon tagging efficiency: > 95%

Beam particle tracking: GTK

GTK: a silicon pixels tracker.

- 3 stations in Run 1, 4 stations in Run 2
- In each station: 18.000 pixels of $300 \times 300 \ \mu m^2 \ (< 0.5 \ X_0)$
- Read out by application-specific integrated circuits (ASIC) arranged in two rows of five chips
- Time resolution: < 150 ps per station
- RICH and KTAG used as time reference

Pion tracking: STRAW Spectrometer

- 4 straw chambers and a large aperture dipole magnet ($\simeq 1.8 X_0$)
- Each straw chamber is composed of two modules providing 4 different views.
- Gas inside the straws: 70% Ar and 30% CO₂
- Each chamber contains 1792 straws of 9.82 mm diameter and 2160 mm length, made by 36 μm thick polyethylene terephthalate (PET)
- > 95% reconstruction efficiency

$K^+ \to \pi^+ \nu \bar{\nu}$ kinematic selection

The squared missing mass

$$m_{miss}^2 = (P_K - P_\pi)^2$$

- P_K : K^+ 4-momentum (GTK 3-momentum + K^+ mass hypothesis)
- P_{π} : π^+ 4-momentum (STRAW 3-momentum + π^+ mass hypothesis)

Charged Particle Identification: RICH

- Ring Imaging CHerenkov counter, filled with neon gas
- Muon suppression factor > 100
- Time resolution $\simeq 80ps$

$$\cos \theta_C = \frac{1}{n \cdot \beta} \rightarrow m^2 = m^2(p, R) = p^2 \cdot \left(\frac{F^2 \cdot n^2}{F^2 + R^2} - 1 \right)$$

Photon rejection: LKr, LAV, IRC, SAC

Hermeticity against photons emitted in standard kaon decays up to 50 mrad

Result from NA62 Run 1 (2016+2017+2018 data)

[JHEP 06 (2021) 093]

$$\mathcal{B}_{16+17+18}^{NA62}(K^+ \to \pi^+ \nu \bar{\nu}) = (1.06^{+0.40}_{-0.34stat} \pm 0.09_{syst}) \cdot 10^{-10}$$
 3.4σ significance, $P(only\ bkg) = 3.4 \cdot 10^{-4}$

Status of $\mathcal{B}(K \to \pi \nu \bar{\nu})$ measurement

- $\mathcal{B}^{SM}(K^+ \to \pi^+ \nu \bar{\nu}) = (0.84 \pm 0.10) \cdot 10^{-10}$, $\mathcal{B}^{SM}(K_L \to \pi^0 \nu \bar{\nu}) = (0.34 \pm 0.06) \cdot 10^{-10}$ [Buras et al., JHEP11(2015)033]
- Grossman-Nir limit: $\mathcal{B}(K_I \to \pi^0 \nu \bar{\nu}) < 4.4 \cdot \mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ [Phys. Lett. B 398, 163 (1997)]

New $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ measurement from NA62 and BSM scenarios

$$\mathcal{B}_{16+17+18}^{NA62}(\textit{K}^{+}\rightarrow\pi^{+}\nu\bar{\nu}) = (1.06^{+0.40}_{-0.34\textit{stat}}\pm0.09_{\textit{syst}})\cdot10^{-10}$$

Large $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ values with respect to SM expectation start to be improbable: high precision measurement needed!

The NA62 published measurements

- Search for K^+ decays into the $\pi^+e^+e^-e^+e^-$ final state, arXiv: 2307.04579 [hep-ex] (2023), submitted to Phys. Lett. B.
- lacktriangledown A study of the $K^+ o \pi^0 e^+
 u \gamma$ decay, arXiv: 2304.12271 [hep-ex] (2023), submitted to JHEP.
- Search for dark photon decays to $\mu^+\mu^-$ at NA62, arXiv: 2303.08666 [hep-ex] (2023), submitted to JHEP.
- A search for the $K^+ \rightarrow \mu^- \nu e^+ e^+$ decay, Phys. Lett. B 838 (2023) 137679.
- A measurement of the $K^+ \to \pi^+ \mu^+ \mu^-$ decay, JHEP 11 (2022) 011.
- Searches for lepton number violating $K^+ \to \pi^-(\pi^0)$ e^+e^+ decays, Phys. Lett. B 830 (2022) 137172.
- Search for Lepton Number and Flavor Violation in K^+ and π^0 Decays, Phys. Rev. Lett. 127 (2021) 131802.
- Measurement of the very rare $K^+ \to \pi^+ \nu \bar{\nu}$ decay, JHEP 06 (2021) 093.
- Search for K⁺ decays to a muon and invisible particles, Phys. Lett. B 816 (2021) 136259.
- Search for a feebly interacting particle X in the decay $K^+ \to \pi^+ X$, JHEP 03, (2021) 058.
- Search for π^0 decays to invisible particles, JHEP 02, (2021) 201.
- An investigation of the very rare $K^+ \to \pi^+ \nu \bar{\nu}$ decay, JHEP 11 (2020) 042.
- Search for heavy neutral lepton production in K⁺ decays to positrons, Phys. Lett. B 807 (2020) 135599.
- Searches for lepton number violating K⁺ decays, Phys. Lett. B 797 (2019) 134794.
- Search for production of an invisible dark photon in π^0 decays, JHEP 1905 (2019) 182.
- First search of $K^+ \to \pi^+ \nu \bar{\nu}$ using the decay-in-flight technique, Phys. Lett. B 791 (2019) 156.
- Search for heavy neutral lepton production in K⁺ decays, Phys. Lett. B 778 (2018) 137.