# SUSY and Dark Matter search results at the CMS Experiment





**University of Wisconsin – Madison, USA** on behalf of the CMS collaboration





31st Lepton Photon Conference Number Convention O
& EXHIBITION CENTRE N

# CMS @ LHC



 Standard model: successful theory of particle physics, thoroughly tested at the experimental level but still far from complete

- LHC: Large Hadron Collider
  - A 27 km collider designed to create rare processes happening in nature
  - Mostly collide protons, currently at  $\sqrt{s}$  = 13.6 TeV
- CMS: Compact Muon Solenoid Experiment
  - One of four big detector at the LHC collision point (p5)
  - Record hadron collisions to unravel the unexplained phenomena of nature

# **Beyond the Standard Model**





# Today's talk



# Some of the recent results on SUSY and DM searches with Run-2 data collected by CMS experiment









# Stealth SUSY: Diphotons + jets + low MET

CMS SUS-19-001 | to be submitted soon

#### CMS SUS-19-001

# Stealth SUSY in diphotons + jets + low MET



- Model: MSSM augmented with a light hidden sector
  - SUSY violation is weak in this hidden sector
  - Super partners are nearly mass degenerate
- Simplest hidden sector has a single scalar singlet (S) and its super partner, singlino  $(\tilde{S})$ 
  - $|m_S m_{\widetilde{S}}| = \text{small} \Rightarrow \text{Low MET (requirement for 'Stealth' SUSY)}$
  - Gravitino  $(\widetilde{G})$  is the LSP, has low momentum
- R-parity conserved
- Signature truly low-MET: robust against ISR boost
- S<sub>T</sub>: Scalar pT sum of jets, photons and MET in event
- Events catergorization:
  - High jet multiplicity
  - Two photons ( $m_{\gamma\gamma} > 90 \text{ GeV}$ ), pT > 35, 25 GeV
  - $S_T > 1200 \text{ GeV}$



No special fine tuning!

- $m_s = 100 \, \text{GeV}$
- $m_{\tilde{s}}$  = 90 GeV
- $\tilde{g} = \{1250, 2350\} \text{ GeV}$
- $\widetilde{q} = \{1100, 2000\} \text{ GeV}$

# Stealth SUSY in diphotons + jets + low MET





Background constraints rely on small correlation between S<sub>T</sub> shape & nJets



- Exclude  $m_{\widetilde{g}}$   $(m_{\widetilde{q}})$  upto 2.15 (1.85) TeV
- 70% improvement in the reach of the exclusion contour in the  $(m_{\widetilde{q}}, m_{\widetilde{\chi}^0})$
- Most stringent limits on these models







# SUSY in photon + jets + large MET

CMS SUS-21-009 | to be submitted soon

# SUSY in photon + jets + large MET



Gauge mediated SUS breaking (GMSB) scenarios using both EWK and strong SUSY production models

- LSP: Gravitino ( $\widetilde{G}$ ), assumed here to be 1 GeV
- Photon decays of neutralinos are prominent

Several possible models are explored

#### Events: ≥ 1 photon, ≥ 2 jets and large MET

- Veto events with leptons
- S<sub>T</sub>: Scalar sum of photon + jets > 300 GeV
- $\Delta \phi$ (Jet, MET) > 0.3 (leading 2 jets)
- Photon pT > 100 GeV

Search categories: With/without a tagged W/Z/H boson

Binned in MET & N<sub>iets</sub>

Main background: lost lepton ( $W\gamma$ +jets,  $tt\gamma$ +jets)





# Results: GMSB - Gluino/Stop



95% CL upper limits on the production cross sections for  $\tilde{g}$  pairs

Observed (expected) limits on gluon mass for small NLSP masses:

**T5bbbZG:**  $m_{\tilde{g}} < 2.32 (2.27) \text{ TeV}$ 

T5bbbbHG:  $m_{\tilde{g}} < 2.35 (2.30) \text{ TeV}$ 

T5††††ZG:  $m_{\tilde{\varrho}} < 2.26~(2.25)~TeV$ 

Exclusion upper limits degrade for very high and very low NLSP masses

T6ttZG:  $m_{\tilde{g}} < 1.43~(1.38)~\text{TeV}$ 









# Results: GMSB – Electroweakinos





Limits assume all possible production modes or nearly degenerate triplet of chargino & neutralino states







# SUSY with angular correlations

CMS SUS-21-007 | Submitted to JHEP | arXiv:2211.08476

# SUSY with angular correlations



Benchmark model: R-parity conserving gluino-pair production simplified models

- 1 lepton from W boson decay,
- W from a top decay (multi-b) or chargino decay (0-b)

Events with 1 lepton, a large # of jets and high MET

Main discriminating observable:  $\Delta \phi$  (I, W<sub>reco</sub>)  $\Delta \phi$  b/w lepton & reconstructed W (W=lepton and MET)



 $\Delta \phi$  between lepton & MET is usually small



 $\Delta \phi$  distribution is flat due to additional MET from two LSPs



L<sub>T</sub>: Scalar sum of Lepton pT + MET H<sub>T</sub>: Scalar sum of hadronic jets



# SUSY with angular correlations



Analysis region is binned in  $H_T$ ,  $L_T$ , njets, nb-tags(multi-b), ntop-tag (multi-b), nW-tag (0b)

#### Baseline selection:

Exactly 1 lepton (e or  $\mu$ ), pT > 25 GeV  $H_T$  > 500 GeV  $L_T$  > 250 GeV At least 2 jets with pT > 80 GeV Number of AK4jets  $\geq$  3  $n_b \geq$  1 &  $n_t \geq$  1 (multi-b) or  $n_b =$  0 (0-b)

Selection on ntop-tag reduces background significantly in signal region

#### Search region is defined by large $\Delta \phi$

<u>In multi-b signal</u>, there are 3 hadronic top decays and 1 semileptonic top decay

 A combination of DNN based AK8 jet tagger and BDT based AK4 jet tagger are used

Zero-b: Hadronically decaying W bosons are identified using AK8 tagger





# Results: SUSY with angular correlations





# No deviation from SM



#### **Exclusions**

# T1### • $m_{\tilde{g}} < 2.13 \text{ TeV}$

 $m_{LSP} < 1.27 \text{ TeV}$ 

#### T5qqqqWW

- $m_{\tilde{g}} < 2.2 \text{ TeV}$
- $m_{LSP} < 1.2 \text{ TeV}$









# Combination of searches: "top squarks"

#### CMS SUS-20-002 | Eur. Phys. J. C 81 (2021) 970



MS SUS-20-002

# Top squarks "in the corridor"



- Search targets simplified models of top squark pair production with three different models (T2tt, T2bW, T2bWt)
- Results are combined for final states with 0,1 and 2 leptons + new search in top corridor with opposite signed leptons (T2tt)
- Top corridor:  $\Delta m_{cor}$ :  $|\Delta m(\widetilde{t_1}, \widetilde{\chi}_1^0) m_t| < 30 \text{ GeV}$ 
  - Top corridor was not included in previous searches
- Sensitivity in top corridor is extended using a DNN to discriminate signal from similar SM ttbar events
  - Oppositely charged leptons, > 2 jets, 1 b-jet, MET> 50 GeV, m<sub>12</sub>(II) > 80 GeV

Corridor results exclusion (first time with CMS data):  $145 < m_{\tilde{t}} < 275$  GeV,  $0 < m_{\widetilde{\chi}_1^0} < 100$  GeV ( $\Delta m_{cor} < 30$  GeV)

#### Combined results:

 $m_{ ilde{t}}$  < 1.3 TeV ( $m_{\widetilde{\gamma}_1^0}$  = 0),  $m_{\widetilde{\gamma}_1^0}$  < 700 GeV ( $m_{ ilde{t}}$  = 1.15 TeV)



# **Dark Matter Interpretation**



The results of the inclusive top squark search are interpreted in an alternative dark matter signal model

Simplified  $t\bar{t}$ +DM model: DM produced by a spin 0 mediator (scalar or pseudoscalar) in association with a top quark pair

$$m_{\phi} = 50 - 500 \text{ GeV}$$
  
 $m_{\gamma} = 1 \text{ GeV}$ 

 $g_q$ : coupling strength b/w mediator and SM quarks = 1  $g_{DM}$ : coupling strength b/w mediator and DM quarks = 1

Scalar ( $\phi$ ) and pseudoscalar (a) mediators with a mass up to 400 GeV & 420 GeV are excluded, respectively

Limits are independent of dark matter mass as mediator is produced on-shell







CMS EXO 21-012 | to be submitted soon

Common DM signature in collider searches: one or more SM particles + MET

# **Dark Higgs to WW**

CMS EXO-21-012

- New collider approach to probe DM rooted in the dark sector
  - scenario where the DM particle acquires mass through its interaction with a dark Higgs boson (s)
- <u>Benchmark model</u>: Majorana DM particle, yield dark Higgs singlet (s) + additional massive spin-1 vector boson (Z')
  - Z' could be responsible for establishing thermal equilibrium b/w visible & dark sector in early universe
- Signature:  $s(WW) + \chi \chi$ ; W decays leptonically or semi-leptonically

Exploits dependence of the kinematics of the final state objects on three model parameters,  $m_{z'}$ ,  $m_s$ ,  $m_{\gamma}$ 

#### Leptonic category:

- Discriminating variable: Transverse mass b/w trailing lepton + MET
   Semi-leptonic category (low cross section, irreducible background)
- Discriminating variable: BDT based on several kinematic variables



100 GeV  $\leq m_{\chi} \leq$  300 GeV 200 GeV  $\leq m_{\chi'} \leq$  2500 GeV 160 GeV  $\leq m_{s} \leq$  400 GeV  $g_{q} = 0.25; g_{\chi} = 1$ 

# **Results: Dark Higgs**





The most stringent limit is set for a  $m_{DM} = 200 \text{GeV}$ , excluding  $m_s$  up to  $\approx 350 \text{ GeV}$  at  $m_{Z'} = 700 \text{ GeV}$ , and up to  $m_{Z'} \approx 2200 \text{ GeV}$  for a  $m_s = 160 \text{ GeV}$ 



**BDT** discriminator

Data/Pred





# Inelastic dark matter with displaced muons pair

CMS EXO-21-010 | Submitted to PRL | arXiv:2305.11649

Soft & displaced

muons

jet

Missing transverse

momentum

### Inelastic dark matter with displaced muons



- First dedicated collider search for IDM
- Postulates: Two DM states ( $\chi_1$  &  $\chi_2$ ) accompanied by a dark photon (A') that kinetically mixes with SM hypercharge.
  - Inelastic senarios: DM states can't scatter elastically with other particles (eg. nucleons)
- Difference b/w lighter & heavier DM states lead to compressed phase-space
   & increased lifetime of the heavier state => LLP signatures



- Compatible with observed thermal-relic DM abundance
- Extend sensitivity from previous results (~ 1 GeV) to heavier DM masses (3-80 GeV)

Events with large MET (> 200 GeV)+ at least 1-jet (>80 GeV) + pair of displaced muons collimated with MET

- Specialized displaced standalone algorithm using only muon detectors info & does not require muon to originate from the interaction point
- ISR jet required to enhance MET from 2  $\chi_1$  collimated with muons:
  - $\Delta R_{\mu\mu} < 0.9$ ,  $\Delta \phi (MET, p_T^{\mu\mu}) < 0.5 rad$





# Inelastic dark matter with display muons



 $\alpha_{\rm D}$  =  $\alpha_{\rm EM}$  scenario more sensitive

But  $\alpha_{\rm D}$  = 0.1 scenario more cosmologically relevant



Upper limits are set on the product of the DM production cross section and decay branching fraction into muons as a function of DM mass  $m_1$  and interaction strength

Resonant enhancement in the exclusion limit from mixing between A' and Z when when  $m_{A'} \sim m_Z$ 



# Other recent results

https://cms-results.web.cern.ch/cms-results/public-results/publications/SUS/index.html

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SUS/index.html

https://cms-results.web.cern.ch/cms-results/public-results/publications/EXO/index.html

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/EXO/index.html

# **Closing Remarks**



- Plethora of models tested for both Dark Matter & SUSY by CMS experiment using Run-2 data sample (~138 fb<sup>-1</sup>)
- New techniques being employed to improve the search strategies, identifications and background rejections
- Small deviations in few channels need to be resolved with a bigger data sample (Run-3: > 250 fb<sup>-1</sup>)

#### **Stay Tuned!**

# ありがとう

Gracias

감사합니다

धन्यवाद

Thank you

谢谢

Grazie

Merci beaucoup

# EXO-20-010 (Comparison with theory)



