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• Axions are well-motivated extensions to the Standard Model of particle 
physics

• Experimental, phenomenological and theoretical interest in axions has 
exploded over the last decade – e.g. in their coupling to photons

• Amongst the oldest of the present limits are the stellar cooling constraints

Before continuing we must first take a detour through the evolutionary 
progression of low mass stars…

https://github.com/cajohare/AxionLimits
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• Helpful to see this in action…
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• Can spark dramatic core breathing pulses - large convective episodes 
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Example

4

Example scheme: standard overshoot
• Time-dependent diffusive process
• Diffusion coefficients decrease exponentially with distance from the 

convective boundary
• Scale of exponential decrease set by free parameter 𝑓𝑜𝑣

• Source of stochastic variation in predictions of 𝑅 – examine in MESA

• Choice of 𝑓𝑜𝑣 systematically shifts 𝑅

• Can only constrain when entire range falls below 95% CL

• Which value of 𝑓𝑜𝑣 do we take?

The issue with 𝑹
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• The ratio of AGB to HB stars – the 𝑅2-parameter – is a particularly appealing candidate for this

The 𝑅2-parameter

5

AGB helium-burning shell is more sensitive to axion energy-loss (~𝑇7/𝜌) 
than HB core. Possible to decrease 𝜏𝐴𝐺𝐵, but not 𝜏𝐻𝐵

Historically used to constrain the effects of mixing across convective 
boundaries

Dominguez et al., MNRAS 
456 (1999) L1
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Constantino et al., MNRAS, 
456 (2016) 3866
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• The goal: calculate a bound on 𝑔10 which accounts for 
the sizeable uncertainty related to mixing across CBs

• 𝑅2 is more restrictive in all cases considered

• Most conservative overall limit 𝑔10 ≤ 0.47 – an 
improvement of 30%

• Complementary constraints on HB convective structure 
from asteroseismology exist

• Limits from schemes supported by asteroseismology 
range between 𝑔10 ≤ 0.34 and 𝑔10 ≤ 0.11

• Evidence not yet conclusive…

Constantino et al., MNRAS, 
452 (2015) 123
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8Advancing globular cluster constraints on the axion-photon coupling

• One imagines the limit from 𝑅2 could be applied to other 
light, weakly interacting particles, e.g. dark photons

• Complement with updated limits from 𝑅 and the red 
giant branch tip luminosity

• Improve on previous bounds by up to an order of 
magnitude

• Story is subtle and interesting…

Dolan, FJH, Volkas 2306.13335

https://arxiv.org/abs/2306.13335
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Observed limits on globular clusters have a strong pedigree 
for constraining axions

The most restrictive of these, based on the 𝑅-parameter, 
neglects sizeable uncertainty from the modelling of mixing 
across convective boundaries

Confronting this leads one to consider the ratio of 
asymptotic giant branch to horizontal branch stars in 
globular clusters

Using 𝑅2 we can construct a new and more robust 
constraint of 𝑔10 < 0.47

Can be applied to other light, weakly interacting particles –
e.g. dark photons [2306.13335]
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Stellar cooling bounds
Axions could be produced in deep stellar interiors, e.g. Primakoff
production (𝑚𝑎 ≲ 1 keV)

If sufficiently light and weakly interacting, they can freely escape 
the local stellar region – new source of energy-loss

Constraints derived in this manner are examples of stellar cooling
bounds

Burning 
region loses 

energy

Region 
contracts and 

heats

More efficient 
energy-loss

Nuclear 
burning 

intensifies

Accelerated 
evolutionary 

phase

𝛾

𝛾

𝑎

𝑒−, 𝑁 𝑒−, 𝑁

Raffelt G., Phys. Rev. D 33 

(1986) 897

Debye screening
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• Convective boundary separates C/O rich convective region below 
and He-rich stable region above

• Convective elements arrive at the boundary with non-zero 
momentum and penetrate the stable region: convective overshoot

• C/O are more opaque than He ⟹ convective region grows

• Contents of new, larger convective region mix 

• Increased presence of He can cause the convective region to split 
giving rise to intermediate region

• Result: evolution of the core boundary is not stable

• Effects are dire if they occur near the end of the HB ⟹ large 
convective episodes which significantly elongate the HB
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Calculating 𝑅2

Advancing globular cluster constraints on the axion-photon coupling

• Simulate evolution of ~0.8𝑀⊙ star through MS, RGB, HB and 
AGB

• Convert results of simulation to probability density function 
of Δlog10𝐿𝐻𝐵 = log10𝐿 − log10𝐿𝐻𝐵

• A clear minimum exists between HB and AGB peaks

• Calculate 𝑅2 as ratio of the areas either side of this minimum

• Repeat for non-zero values of 𝑔10



• Dark photons have both L and T polarisations

• Nature of stellar dark photon production depends on 
polarisation being considered

• Focused on transverse dark photon energy-loss

• RPR can be off-centre & moves throughout evolution

• Existing constraints based on static stellar profiles are 
blind to many interesting effects of this

• Dark photons are the gauge bosons associated with 
hypothesised new 𝑈(1) gauge groups

• Interact with SM via kinetic mixing with the visible 
photon

• If sufficiently light and weakly interacting, can be subject 
to the same suite of constraints as axions - including 
globular cluster stellar cooling limits

Dark photons & stellar cooling

Can have non-zero 
physical mass 𝑚𝐷𝑃

Transverse dark 
photons produced 

resonantly

Portal to 
dark sector

DM
candidate

Background Stellar production

≡ resonant production region (RPR)

Local plasma 
frequency

• Goal: Calculate updated globular cluster constraints on dark 
photons from 𝑹, 𝑹𝟐 (and the RGB-tip luminosity)

Resonant 
production if
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General improvement 
over existing bounds

Dynamic simulations 
necessary to capture full 

impact of moving RPR

Results
• Bound from 𝑹𝟐

Interplay between 
energy-loss and 

convective structure

Dark photons cause core 
breathing pulses

Strong constraint from 𝑅2

• Complement with

Full story in
arXiv:2306.13335

Stop at 𝑚𝐷𝑃 = 500 𝑒𝑉

Less massive dark photons 
disrupt main sequence 

evolution

Updated limit from RGB-
Tip luminosity & 𝑅
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