

The Hyper-Kamiokande Experiment: design, status of construction and physics goals

Science and Technology Facilities Council 31st International Symposium on Lepton 19th July 2023 Photon Interactions at High Energies Melbourne, Australia

Paul Soler (on behalf of the Hyper-Kamiokande Collaboration) University of Glasgow

LEVERHULME TRUST _____

Hyper-Kamiokande Detector

- The Hyper-Kamiokande detector is the next generation water Cherenkov detector in Kamioka, Japan, with an accelerator and near detector complex at J-PARC in Tokai
- □ Size: 258 kton, with fiducial mass ~8 times larger than Super-K,
- Baseline: 20,000 50-cm photomultiplier tubes (PMT), ~2,000 multi-PMT modules and 7,200 outer detector 8-cm PMTs with wavelength shifting (WLS) panels

Hyper-Kamiokande Project

The Hyper-Kamiokande project includes a far detector
a near detector and an intermediate detector

295 km

Far detector (Kamioka Observatory)

Hyper-Kamio

Accelerator, near detector and intermediate detector (J-PARC, Tokai)

and WUT

Science goals Hyper-Kamiokande

Hyper-Kamiokande is both a microscope and a telescope

Accelerator neutrinos nospheric neutrinos

Neutrino oscillation, matter effects, mass ordering,

ernova neutrinos and

Neutrino oscillations

Neutrino oscillations in Hyper-K with neutrino beam

- Off-axis at 2.5° neutrino beam to achieve maximum neutrino flux at oscillation maximum of 0.6 GeV, beam upgrade from 515 kW to 1.3 MW
 - Power supply upgrade: 250 kA → 320 kA; ^{J-P/}₃₀₀
 - Cycle: 2.48 s → 1.32 s → 1.16 s/cycle
- Upgrade of ND280: October 2023
 - New Super-Fine Grained Detector (SFGD)
 - High-Angle TPC and Time-of-Flight system
- New Intermediate Water Cherenkov Detector (IWCD):

Uses PRISM approach: change off-axis angle 1° – 4° to change mean neutrino energy and constrain: $\frac{\sigma(\nu_e)/\sigma(\nu_\mu)}{\sigma(\bar{\nu}_e)/\sigma(\bar{\nu}_\mu)}$

Neutrino oscillation sensitivity in Hyper-K

- With optimistic systematics and known mass ordering (MO): 2-3 years for 5σ sensitivity to exclude CP conservation for true $\delta_{CP} = -\pi/2$.
- After 10 year operation, 60% of δ_{CP} values excluded at > 5 σ .

Atmospheric neutrino oscillation

- Atmospheric neutrinos measure direction of cosmic rays and are sensitive to mass ordering (MO)
- Enhancement of $P(\nu_{\mu} \rightarrow \nu_{e})$ for NO and $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ for IO

CP violation sensitivity with atmospherics

• Sensitivity CP violation with 1:3 $v: \overline{v}$ beam with atmospherics, with and without MO

Normal ordering

Inverted ordering

Mass ordering sensitivity with beam and atmospherics Typer-Kamiokande

• After 10-year operation, mass ordering can be determined with 4σ - 5σ

Solar neutrinos

□ Solar neutrino oscillations are enhanced by matter (MSW) effects as function of energy - $P(v_e \rightarrow v_e)$ falls with energy

Supernova neutrinos in Hyper-Kamiokande

- Hyper-Kamiokande is sensitive to neutrinos from pre-supernova, core-collapse supernova bursts and from integrated relic supernova neutrino background
- □ Pre-supernova: Si burning ~2 days before core collapse, e.g. for 20 M_{\odot} , enhanced if Hyper-K loaded with Gd Multi-messenger astronomy

Supernova Relic Neutrinos (SRN)

Hyper-Kamiokande has sensitivity to integrated relic neutrino background: diffuse neutrinos coming from all past supernovae (window between 16-30 MeV)

Hyper-Kamiokande Schedule and Civil Engineering

Scheduled start of data-taking: 2027

Overview of Hyper-K construction

Hyper-Kamiokande

Cavity for water purification system

Access tunnels completed Commenced cavern excavation Civil engineering on track Centre of dome reached June 2022

Hyper-Kamiokande Schedule and Civil Engineering

Cavern excavation First

Cavern dome constructed in consecutive rings. 1st – 4th rings complete and working on 5th ring Excavation of dome on track

Hyper-Kamiokande Photomultiplier Tubes

- 20,000 Hamamatsu 20-inch box-and-line PMTs
- PMT production and quality assurance started

- ~2,000 multi-PMT modules (19 3-inch PMTs) for better vertex resolution performance
- ~7,200 Outer Detector 3-inch PMTs with wavelength shifting panels to veto cosmics Ongoing studies to reduce number, by using Inner Detector reconstruction

Hyper-Kamiokande Electronics

HV and LV

power supplies

Data processing and timing boards

Front-end electronics placed in underwater vessels

2 ID front-end boards

2 OD front-end boards

- Two types of underwater electronics vessels
 - Inner detector vessels: 24 ID channels read out by two PCBs
 - Hybrid outer + inner detector vessels: 20 ID + 12 OD channels
 Preliminary

Conclusions

- Hyper-Kamiokande is next generation water Cherenkov detector
- Hyper-K will produce world-leading results in:
 - Neutrino oscillations: search for CP violation (5 σ sensitivity in 60% δ_{CP}) and determination of mass ordering
 - Solar and atmospheric neutrinos
 - Searches for supernova bursts and supernova relic neutrinos
 - World-leading proton decay search with expected lifetime sensitivity $> 10^{35}$ years
- Hyper-Kamiokande construction on schedule
 - World's largest underground facility: 260 kton water Cherenkov detector
 - Access tunnel and cavern construction on track
 - Photomultiplier production underway
 - Electronics and underwater electronics vessel designs being finalised
 - Neutrino beam upgrade to 1.3 MW
 - Near detector upgrade and design of intermediate detector being finalised

BACKUP

Neutrino oscillations

Three-flavour oscillation formula for Hyper-K analysis:

$$P_{\nu_{\mu}\nu_{e}(\bar{\nu}_{\mu}\bar{\nu}_{e})}$$

$$= \sin^{2}\theta_{23}\frac{\sin^{2}2\theta_{13}}{(A-1)^{2}}\sin^{2}[(A-1)\Delta_{31}]$$

$$\mp \alpha \frac{J_{0}\sin\delta_{CP}}{A(1-A)}\sin\Delta_{31}\sin(A\Delta_{31})\sin[(1-A)\Delta_{31}]$$

$$+ \alpha \frac{J_{0}\cos\delta_{CP}}{A(1-A)}\cos\Delta_{31}\sin(A\Delta_{31})\sin[(1-A)\Delta_{31}]$$

$$+ \alpha^{2}\cos^{2}\theta_{23}\frac{\sin^{2}2\theta_{12}}{A^{2}}\sin^{2}(A\Delta_{31})$$

Matter enhances neutrino oscillations due to neutrino interactions

Hyper-Kamiokande

assuming:

$$\alpha = \Delta m_{21}^2 / \Delta m_{31}^2 \qquad A = (-)2\sqrt{2}G_F n_e E / \Delta m_{31}^2 \qquad \begin{array}{l} \text{Parameter A depends} \\ \text{on matter density } n_e \end{array}$$
$$\Delta_{ij} = \Delta m_{ij}^2 L / 4E \qquad J_0 = \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \cos \theta_{13} \qquad 21 \end{array}$$

Neutrino oscillations in Hyper-K with neutrino beam

Off-axis at 2.5° neutrino beam to achieve maximum neutrino flux at oscillation maximum of 0.6 GeV
Hyper-K

Degeneracy between δ_{CP} and mass ordering

J-PARC beam, near detector and IWCD

- Neutrino beam at J-PARC being upgraded for T2K and for Hyper-K era, from 515 kW to 1.3 MW
 - Power supply upgrade: 250 kA \rightarrow 320 kA;
 - Cycle: 2.48 s \rightarrow 1.32 s \rightarrow 1.16 s/cycle
- □ Upgrade of ND280: October 2023
 - New Super-Fine Grained Detector (SFGD)
 - High-Angle TPC and Time-of-Flight system
- New Intermediate Water Cherenkov Detector (IWCD):

Uses PRISM approach: change off-axis angle $1^{\circ} - 4^{\circ}$ to change mean neutrino energy and constrain: $\sigma(\nu_e)/\sigma(\nu_\mu)$

 $\overline{\sigma(\bar{v}_e)/\sigma(\bar{v}_\mu)}$

Neutrino oscillation sensitivity in Hyper-K

- Accuracy Δm_{32}^2 and wrong octant $\sin^2(\theta_{23})$ sensitivity with improved systematics
- □ After 10 HK-years, $sin^2\theta_{23}$ =0.5 can be excluded at 3 sigma for true $sin^2\theta_{23}$ < 0.47 and true $sin^2\theta_{23}$ > 0.55

Solar neutrinos

parameters vs

Solar neutrino mixing

day-night asymmetry

- Day-night asymmetry: regeneration in matter on Earth (evidence MSW)
- **Observation of HEP** neutrinos above ⁸B neutrinos

Hyper-Kamiokande

24

Supernova neutrinos in Hyper-Kamiokande

 Supernova model discrimination with Hyper-Kamiokande: five supernova models were considered

K. Abe et al., Ap. J. 916 15 (2021)

Event rate vs Time

Model	Mass		events at 10 kpc*	N=100	N=300
Totani arXiv:astro-ph/9710203	$20~M_{\circ}$	1D	19716	140 kpc	81 kpc
Nakazato arXiv:1210.6841	$20~M_{\circ}$	1D	17978	134 kpc	77 kpc
Couch arXiv:1902.01340	$20~M_{\circ}$	1D	27539	166 kpc	96 kpc
Vartanyan similar to arXiv:1804.00689	$9~M_{\odot}$	2D	10372	102 kpc	59 kpc
Tamborra arXiv:1406.0006	$27~M_{\odot}$	3D	25021	158 kpc	91 kpc

Mean energy vs Time

Hyper-Kamiokande

26

Pre-supernova neutrinos

Pre-supernova anti-neutrinos are from final stages of stellar burning

He

Ne

0

Si

Could consider loading Gd also in Hyper-K to enhance pre-SN signal

Last stage before collapse is Si building Super-K has loaded Gd in water to detect neutrons more efficiently Antineutrino Protor Gamma-rays Positron Cherenkov Ligh Cherenkov Light Pre-Supernova alarm in Super-K with 0.01% Gd in

water for early warning

L. Machado et al., Ap. J. 936 40 (2022)

Burning Stage	Duration	$ u_e \ (\bar{ u}_e) \ { m fraction}$	Average ν energy
С	300 years	42.5%	0.71 MeV
Ne	140 days	39.8%	$0.99~{ m MeV}$
О	$180 \mathrm{~days}$	38.9%	$1.13~{\rm MeV}$
Si	2 days	36.3%	$1.85 { m MeV}$

