

Bayesian Neutrino Oscillation Analysis at T2K

Henry Israel (University of Sheffield) on behalf of the T2K Collaboration

Overview

- Recap of neutrino oscillation physics
- Overview of the T2K experiment
- Introduction to Bayesian Markov Chain Monte Carlo (MCMC)
- Analysis of T2K's latest results using MCMC!
- A look into the future of Bayesian neutrino oscillation analysis

What are Neutrino Oscillations?

Neutrino Oscillations

Flavour States Atmospheric Reactor Solar Mass States
$$\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{cp}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{cp}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_2 \end{pmatrix}$$

$$c_{ij} = \cos(\theta_{ij})$$

- Neutrino mass and weak flavour eigenstates are not the same and related via the PMNS matrix $s_{ij} = \sin(\theta_{ij})$
- Results in neutrino oscillations i.e. the weak flavour state changes as a function of propagation distance and energy
- Interesting physics still needs to be done!:
 - $\delta_{cp} \neq \{0, \pm \pi\}$ Is CP violated in the Lepton Sector?
 - Do the neutrino mass states have a "normal ordering" or "inverted ordering" ($\Delta m_{32}^2 = m_3^2 m_2^2 > 0$ or <0)?

Neutrino Oscillations

Flavour States Atmospheric

$$\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{ au} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} m^2 & m^2 & m^2 \\ -s & s_{23} & s_{23} \end{pmatrix}$$

- Neutrino mass and weak flavour eigenstate
- Results in neutrino oscillations i.e. the weak energy
- Interesting physics still needs to be done!:

Inverted Ordering

► Do the neutrino mass states have a "normal ordering" or "inverted ordering" ($\Delta m_{32}^2 = m_3^2 - m_2^2 > 0$ or <0)?

The T2K Experiment

The T2K Experiment

- Long baseline and off-axis neutrino oscillation experiment
- Two detector complexes:
 - ► Far Detector : Super-Kamiokande (SK) 295km from target
 - ► Near Detector: ND280, INGRID and WAGASCI/BabyMIND 280m from target

J-PARC and T2K Beam

- T2K uses the **J-PARC** proton beam to generate neutrinos
- Protons from the J-PARC beam are fired at a graphite target
- The final state contains mostly pions/kaons
- Charged particles can be focused by magnetic horns to select for π^+/K^+ and π^-/K^- resulting in a primarily $\bar{\nu}_\mu$ or ν_μ beam
- Charged hadrons decay into neutrinos
- The beam hits bedrock (sand) absorbing all non-neutrino particles

The Main
Ring!

Near Detectors

University of Sheffield

On Axis

Located at same off axis angle as SK (2.5°)

Only ND280 data used in OA

INGRID and ND280 used to provide constraints on beam flux parameters

POD (π⁰· detector)

Downstream ECAL

Solenoid Coil

P₀D

ECAL

Barrel ECAL

UA1 Magnet Yoke

Provides world leading neutrino cross-section measurements!

Super-Kamiokande

50 kt water Cherenkov detector!

Located at "oscillation maximum" (probability of $\nu_{\mu} \rightarrow \nu_{e}$ is highest)

Bayesian Fits

Bayesian Approach

- T2K's Bayesian fitter is known as MaCh3
- Use Bayesian Markov Chain Monte Carlo (MCMC) for T2K analysis
- Can think of Metropolis-Hastings as a "directed random walk" around the parameter space where direction is determined by the likelihood
- The **number of steps** in a given region is proportional to the posterior likelihood
- Marginalisation used to get 1D and 2D posteriors

Markov Chain Monte Carlo

- T2K's Bayesian fitter is known as MaCh3
- Use Bayesian Markov Chain Monte Carlo (MCMC) for T2K analysis
- Can think of Metropolis-Hastings as a "directed random walk" around the parameter space where direction is determined by the likelihood
- The **number of steps** in a given region is proportional to the posterior likelihood
- Marginalisation used to get 1D and 2D posteriors

Figure: Lee, Jaewook & Sung, Woosuk & Choi, Joo-Ho. (2015). *Metamodel for Efficient Estimation of Capacity-Fade Uncertainty in Li-Ion Batteries for Electric Vehicles,* Energies

Recent T2K Results

T2K 2022 Systematics Model

Lepton Photon 2023 T2K Results

δ_{cp} Result

- Fit here uses constraint $\sin^2(\theta_{13})$ on taken from reactor experiments
- CP conserving values lie outside the 90% credible interval
- Large region now outside the 99% credible interval
- Best fit region near maximal CP violation $(-\pi/2)$

Mass Ordering

- We also have sensitivity to neutrino mass ordering
- We prefer NO over IO by a factor of 1.7x
- MCMC fitter can fit to both orderings!

Lepton Photon 2023 T2K Results

Triangle Plot

- Really nice way to visualise all correlations
- Shows every combination of pairs of oscillation parameters

The Future!

- The MaCh3 fitter is now active on multiple experiments both current and future!
- Combined analysis using Super-Kamiokande
 Atmospherics + T2K data to provide even better constraints on oscillation parameters
- Joint analysis of T2K/NOνA data is ongoing
- Thinking about the future, there's a huge amount of work towards getting the fitter ready for **HK** and **DUNE**!
- The core MaCh3 code is being overhauled and is now publicly available in a pre-alpha state https://github.com/ mach3-software/MaCh3

Coming Soon!

Filter should be ready from day 1 for these experiments!

Multiple experiments will be able to use the same core code and share expertise!

Summary

- T2K is producing world leading neutrino oscillation analysis measurements
- World leading δ_{cp} constraint on **CP**-conservation of 2σ
- Bayesian MCMC is an incredibly powerful tool for these analyses!
- Helping to pave the way for future oscillation analyses!

The T2K Collaboration!

Backups

What's New for T2K?

- Results are from 2022 oscillation analysis
- Improved **flux prediction** based on a replica target at NA61/SHINE. This brings down flux uncertainties by **6**%
- This analysis uses a new cross-section systematics model
- Primary changes are new CCQE, MEC, resonant π production and final state interaction (FSI) affecting systematics
- New treatment of binding energy (E_b) based on electron scattering data
- Additional Super-Kamiokande selection accounting for muon-ring events with multiple Cherenkov rings in the final state
- New ND280 selections with improved proton and photon tagging!

CCQE Improvements:

- More theory driven uncertainties!
- Improvements to Spectral Function parametrisation
- Improved normalisation of nuclear shell model, short range correlations and Pauli blocking

MEC Improvements:

Model now includes 2p2h for proton/neutron vs proton/

Resonant π Improvements:

- Improved uncertainty of π^{\pm} vs π^{0} production
- New parameters for resonant pion decay

FSI Improvements:

New nucleon FSI parameter

Far Detector

- Located 295 km from the proton target
- SK uses Cherenkov radiation to detect particles created during neutrino interactions
- SK selections are created using characteristic rings left behind by the Cherenkov cone
- Cherenkov radiation can be detected by Photomultiplier
 Tubes (PMTs) located around the edge of the detector
- Selections are split broadly in " μ -like" and "e-like" and by beam production mode (ν and $\bar{\nu}$ mode)
- Recently **gadolinium** has been added for increased $\nu/\bar{\nu}$ discrimination!

Far Detector Selections

- 6 selections are now used:
 - ν and $\bar{\nu}$ mode events with 1 e-like ring in the final state
 - ν and $\bar{\nu}$ mode events with 1 μ -like ring in the final state
 - ν mode events with 1 e-like ring and 1
 Michel electron in final state

• ν mode events with 1 μ -like ring and either 2 Michel electrons or 1 Michel electron and $1\pi^+$ in the final state

NEW FOR THIS ANALYSIS

Jarlskog Invariant

- Another useful metric for measuring CP violation is the Jarlskog invariant
- This is the actual term in the $\nu_{\mu} \to \nu_{e}$ oscillation probability that differs between ν and $\bar{\nu}$ for non-0/ $k\pi$ values of δ_{cp}
- As it's proportional to $\sin(\delta_{cp})\,J_{cp}=0\Rightarrow {\rm CP}$ violation

Jarlskog Invariant, Both Hierarchies

PMNS matrix parameterisation independent measure related to CP violation

Start position for each step

At step t location in parameter space is given by X_t

Pick a new point, Y, from a Gaussian centred on X_t

Evaluate the ratio of likelihoods $\alpha = \min \left[1, \, \mathcal{L}(Y) / \mathcal{L}(X) \right]$

Generate a random number, $u \sim U(0,1)$

If $\alpha > u : X_{t+1} = \overline{Y}$ else : $X_{t+1} = X_t$

If $\alpha > u : X_{t+1} = Y$

else : $X_{t+1} = X_t$

Parameter Value

Evaluate Likelihoods

At step t location in parameter space is given by X_t

Pick a new point, Y, from a Gaussian centred on X_t

Evaluate the ratio of likelihoods $\alpha = \min \left[1, \, \mathscr{L}(Y)/\mathscr{L}(X) \right]$

Generate a random number, $u \sim U(0,1)$

If $\alpha > u : X_{t+1} = Y$ else : $X_{t+1} = X_t$

Generate Acceptance Probability

At step t location in parameter space is given by X_t

Pick a new point, Y, from a Gaussian centred on X_t

Evaluate the ratio of likelihoods $\alpha = \min \left[1, \, \mathscr{L}(Y)/\mathscr{L}(X) \right]$

Generate a random number, $u \sim U(0,1)$

If $\alpha > u : X_{t+1} = Y$ else : $X_{t+1} = X_t$

$$u = 0.4 \Rightarrow u < \alpha$$

Accept/Reject Step and Repeat!

At step t location in parameter space is given by X_t

Pick a new point, Y, from a Gaussian centred on X_t

Evaluate the ratio of likelihoods $\alpha = \min \left[1, \, \mathscr{L}(Y) / \mathscr{L}(X) \right]$

Generate a random number, $u \sim U(0,1)$

If $\alpha > u : X_{t+1} = Y$ else: $X_{t+1} = X_t$