ATMOSPHERIC NEUTRINO OSCILLATIONS AT JUNO

31st International Symposium on Lepton Photon Interactions at High Energies@Melbourne

WUMING LUO(IHEP) ON BEHALF OF JUNO

%Introduction to JUNO and atm. Neutrinos #Updates w.r.t. JUNO Yellow Book Neutrino flux and interactions Directionality and PID Event selection
 Summary and outlook

Wuming Luo

OUTLINE

Jiangmen Underground Neutrino Observatory(JUNO):

- Determine the neutrino mass ordering
- Measure neutrino oscillation parameters to sub-percent level SuperNova, Solar, Atm. Geo. etc

Wuming Luo

T,	DETECTOR ARGET MASS	ENERGY RESOLUTION	
KamLAND	1000 t	6%@1MeV	
D. Chooz	8+22 t		
RENO	16 t	8%@1MeV	
Daya Bay	20 t)	
Borexino	300 t	5%@1MeV	
JUNO	20000 t	3%@1MeV	

~	17.
+	~2
+	~

Liquid Scintillator 20kton

JUNO

Top Tracker <

Water Pool <

Central Detector

612 20" PMTs 5,600 3" PMTs 75% coverage

ATM. VOSCILLATION@JUNO

5

- Optimistic NMO sensitivity from JUNO Yellow Book: ~1.4 σ @6years
- # JUNO ensitivity to low energy atmospheric neutrino spectra (Eur.Phys.J.C 81 (2021) 10)

Significant progress on the analysis components Wuming Luo

Curtesy of Jie Cheng

Three state-of-the-art calculations for 3D atmospheric neutrino flux	Hadronic interaction mode	
HKKMS	JAM+DPMJET	
Bartol	TARGET	
FLUKA	FLUKA	

The flux calculations for primary cosmic rays rely on measurements as the foundation for the models.

HKKMS atmospheric neutrino flux model for JUNO Flux calculation developed from 10 MeV to 100GeV Wuming Luo 6

FLUX

Jie Cheng@WANP2022 Sato Kazufumi@Neutrino2022

INTERACTION MODELS

GeV neutrino interaction is model dependent! Existing generators: GENIE/NuWro/GiBUU We are working on the latest versions of the generators, within the Gev v-A high-eNergY MEDium Effect (GANYMEDE) working roup Kaile Wen@Neutrino 2022

7

INTERACTION UNCERTAINTY

Proposed methods of estimating interaction uncertainty for GeV neutrinos Model variation: take the difference of the model predictions as one source of the uncertainties 影 **In-situ measurements:** seek unique features within the atm. ν events for *in-situ* measurements

Developed for NC background prediction in Diffuse Supernova Neutrino Background (DSNB) study, also applicable for GeV CC events

Model variation:

Phys.Rev.D 103 (2021) 5, 053001 JCAP 10 (2022) 033

JUNO NMO SYNERGY by Liang Zhan

* NMO @ 6years $\Delta \chi^2$: Reactor (~9), atm. (~1.96), $|\Delta m^2_{ee}|(4|1.5\% \text{ or } 9|1\%)$

- 1.96 of atm. was estimated with assumptions
- Can we do better than Yellow Book?

reactor ν MeV

Neutrino Mass Ordering

 $|\Delta m^2_{\alpha\alpha}|$

CHALLENGES AND OPPORTUNITIES

$3 \times 2D$ views \Rightarrow 3D imaging

LArTPC

* Neither track information, nor Cherenkov rings for JUNO Can we still do <u>Direction reco and PID</u> for JUNO? Advantages of JUNO: 1. large PMT coverage(75%); 2. excellent neutron tagging; 3. hadronic component visible in LS; 4. can measure distinctive isotopes Wuming Luo 10

Water Cherenkov

PARTICLE TOPOLOGY

Energy deposition topology in LS for different type of particles

μ

e

Wuming Luo

11

RECO/PID METHODOLOGY

Step 1: feature extraction from PMT waveforms

DIRECTIONALITY

 \ll Directly reconstruct the direction of ν instead of the charged lepton # mitigate the intrinsic large uncertainty between the two * hadronic component in LS also helps, advantageous w.r.t. Water Cerenkov # Energy dependent Zenith Angle resolution, less than 10° for E>3GeV Methodology paper to be published soon Wuming Luo 13

Yellow Book $\sigma_{\theta\mu} = 1^{\circ}$ $\sigma_{\theta\nu} = 10^{\circ}$

PARTICAL IDENTIFICATION

 Event classification: ν_{μ} vs $\overline{\nu}_{\mu}$ vs ν_{e} vs $\overline{\nu}_{e}$ vs NC vs CC-µ vs NC eff. w.r.t. Yellow Book

EVENT SELECTION FLOW

UPDATES W.R.T. YELLOW BOOK

	Yellow Book assumptions	NEW developments
Event Selection $v_e \sqrt{v_e}$	E _{vis} > 1GeV <mark>Y_{vis}=E_h/E_{vis} < 0.5</mark>	$E_{vis} > 1GeV$
Directionality	$\sigma_{\theta\mu} = 1^{\circ}$ $\sigma_{\theta\nu} = 10^{\circ}$	σ _{θν} <10° (E>3GeV)
Classification	CC-e / CC-μ / NC: 100% eff.	CC-e / CC-μ / NC 80%~95% eff.
Classification	ν vs $\overline{\nu}$: simple classification with Ne, Y _{vis} ,	ν vs ν : 50%~80% eff
Energy	$\sigma_{\rm Evis} = 1\%/\sqrt{\rm E}$	$\sigma_{{\sf E} u}$

SUMMARY

sensitivity of JUNO © Critical challenges for atm. ν are Directionality and PID Developed a multi-purpose Machine-Learning method Many more progress on the Oscillation analysis (flux/interaction, event selection, systematics etc) Please stay tuned!

Wuming Luo

- % Combined with reactor ν , GeV atm. ν can further enhance the NMO
 - * Preliminary results show that JUNO has good potential in these aspects

THANK YOU!

- Systematic Uncertainties:
- Normalization rate error:
 - 1. Cross section error: $\sigma_{Xsec} = 10\%$;
 - 2. Overall flux error: $\sigma_{\phi} = 20\%$.
- Flux energy E_{ν} and zenith angle $\cos \theta_z$ dependent error.
 - Energy dependent uncertainty [1]: 1.

•
$$\sigma_{E_{\nu}}^{\phi} = 5\%$$
, $\pi_{n}^{E_{\nu}} = 5\% \cdot \ln \frac{E_{\nu}}{2 \text{ GeV}}$.

Angular dependent uncertainty 2. [1]:

•
$$\sigma^{\phi}_{\cos \theta_z} = 5\%, \ \pi^{zenith}_n = 5\% \cdot < \cos \theta_z >$$

Wuming Luo

samples. The track-like sample contains only $\nu_{\mu}/\bar{\nu}_{\mu}$ CC events with a $E_h/E_{\nu} < 0.65$ inelasticity and the point-like sample all other CC and NC events. Here we do not consider the statistical separation of neutrinos and antineutrinos, and do not discriminate the FC and PC events. In contrast to the optimistic case, we take the $5\%\sqrt{E_{\rm vis}}$ and $37.2^{\circ}/\sqrt{E_{\nu}}$ for the visible energy and the neutrino direction resolutions, respectively. $37.2^{\circ}/\sqrt{E_{\nu}}$ corresponds to the mean angle between the lepton and neutrino directions. In order to calculate the MH

Super-K
single-ring e -l
single-ring µ-
v_e/v ⁻ _e: 62.1%/54.6% single-ring eve 47.1%/71.5% multi-ring eve
ν_μ/ ν¯_μ: Ν.

Experiments	Flux uncertainty				D-f
	Flux normalization	Spectral index	v_{μ}/v_{e} ratio	Others	Ket.
Super-K	25% (< 1GeV) 15% (>1 GeV)	5%	5%	v/v-bar ratio: 5%	PRD 97 (2018) 072001
Ice-Cube	20% (tens of GeV) 40% (TeV)	10% 3%	20% /	Meson production: π: 15%-30% Κ: 30-40%	arXiv: 2304.12236, arXiv: 2201.03566, PRD 91 (2015) 072004
ANTARES	Free	10%	20%	/	JHEP 06 (2019) 113
MINOS	15%	10%	5%	1	PRD 86 (2012) 052007

