

Contents

- **The COMET Experiment**
 - Search for a Charged LFV
 - § Search for a μ-e conversion
 - Experimental overview
- **Current Status**
 - Facility
 - Accelerator
 - Detectors
- **Towards the Start of COMET Phase-I**

Search for Charged Lepton Flavour Violation in µ-processes

* Muon is Best Probe to search for CLFV; eg. $\mu^+ \rightarrow e^+ \gamma$, $\mu^- N \rightarrow e^- N$, $\mu^+ \rightarrow e^+ e^- e^-$

- * Try to Explore New Physics via "Charged Lepton Flavour Violation"
- * Among "Quark", "Neutrino" = Known as Flavour violated
- * "Charged Lepton Flavour Violation (cLFV)" = Never Observed so far
 - Very sensitive to the TeV-scale new physics beyond Standard Model
 - → Complementary and Competitive to the Energy Frontier (eg. LHC)

- * "Muon-to-Electron Conversion in Muonic Atom $(\mu^- N \rightarrow e^- N)$ "
 - Charged LFV, So-called "μ-e Conversion"
 - One of the most prominent process of muon LFV

- * "Signal"
 - * $E_e = m_{\mu} B_{\mu} E_{recoil}$ ~105 MeV (muonic Al)
- * "Background"
 - * Beam-related
 - Normal muon decay in Orbit (DIO)
 - * Cosmic-ray induced

- * "Muon-to-Electron Conversion in Muonic Atom (μ - $N \rightarrow e$ -N)"
 - Charged LFV, So-called "μ-e Conversion"
 - One of the most prominent process of muon LFV

- * "Muon-to-Electron Conversion in Muonic Atom $(\mu^- N \rightarrow e^- N)$ "
 - Charged LFV, So-called "μ-e Conversion"
 - One of the most prominent process of muon LFV

- * "Muon-to-Electron Conversion in Muonic Atom $(\mu^- N \rightarrow e^- N)$ "
 - Charged LFV, So-called "μ-e Conversion"
 - One of the most prominent process of muon LFV

The COMET Experiment

* Enabled by "Four Features" \rightarrow Aim to achieve target sensitivity of $O(10^{-17})$

Beam-related Background to Search for µ-e Conv.

* Dominant Background

- Beam-related prompt Background, mainly caused by pion decays
- Muonic atom (of Al) has a lifetime of ~1µsec
- * Delayed DAQ-window right before the next proton bunch allows for BG-free Search
- * Extinction is ESSENTIAL!

of leaked protons in between bunches

Extinction =

of filled protons in main bunches

Extinction should be <10⁻¹⁰ at least to achieve the COMET Goal

(Single Event Sensitivity: 10⁻¹⁷)

Two-Staged Approach

* COMET Phase-I

- Construct up to first 90° bend and place detector.
- Perform direct beam measurement
 - * No backward σ_{π} data so far
 - No real BG data so far
- * Perform μ -e Search with an intermediate sensitivity $(O(10^{-15}))$

* COMET Phase-II

- Complete all transport
- * Perform μ -e Search with a full sensitivity ($O(10^{-17})$)

Two-Staged Approach

* COMET Phase-I

- Construct up to first 90° bend and place detector.
- Perform direct beam measurement
 - * No backward σ_{π} data so far
 - No real BG data so far
- * Perform μ -e Search with an intermediate sensitivity $(O(10^{-15}))$

COMET Phase-II

- Complete all transport
- * Perform μ -e Search with a full sensitivity ($O(10^{-17})$)

Detectors for COMET Phase-I

For μ-e Conversion Search

- ◆ "CyDet" = Cylindrical Detector System
- For Phase-I, centre part of beam is dominated by BG, i.e. Cylindrical Drift Chamber and Cylindrical Trigger Hodoscope is employed to search for μe conversion.
- ✦ He-iC₄H₁₀ gas-mixture to reduce material budget, Hollow cylinder design to have a BG tolerance

For Beam Measurement

- **↑** "StrECAL" = Straw tracker and ECAL
- **◆** To measure all delivered beam including BG, vacuum-compatible tracker and calorimeter is employed
- Straw = Planer/Low-mass, LYSO crystal
 ECAL = High resolution / High density
- **◆** Same concept as Phase-II detector **◆** Prototype of Phase-II Final Detector

Current Status (1) — Facility Construction —

- * Dedicated proton beam line, Completed
 - * Three proton beam lines in Hadron Experimental Facility. **A-Line** and **B-Line** are in operation. **C-Line**, dedicated for COMET, was just completed in spring 2022, and 1st commissioning w / low intensity beam was conducted in spring 2023.
- Inside COMET hall, pion/muon transport system is under construction.
 - * Transport solenoid is already completed. Other components, pion capture solenoid, detector solenoid *etc.*, are under construction.

Current Status (1) — Facility Construction —

Proton Beam Line

"C-Line" & "Transport solenoid" was commissioned with low intensity proton beam this spring.

COMET Phase-α

See "COMET Phase-Alpha Experiment to Investigate COMET's New Muon Beamline at J-PARC" by K. Oishi

Hadron **Experimental** Other Solenoids **CS Cold Mass**

by K. Oishi

O' "Pion capture" and "Detector" solenoids;

All coil ready, will be completed in this FY.

solenoid, detector solenoid etc., are un

181

Current Status (2) — Accelerator Development —

- * Dedicated 8-GeV Operation Tests have been carried out repeatedly so far.
 - Operation chain; injection/acceleration/extraction, successfully established.
 - Good bunched slow-extraction efficiency of >97%, achieved

- * Extinction development was also successfully conducted at Main Ring Proton Synchrotron and Secondary Beam Line in Hadron Experimental Facility.
- * Excellent extinction (*O*(10⁻¹²)-*O*(10⁻¹¹)) in MR, confirmed. Observed Small leaks in secondary beam was also successfully solved. Proton-beam extinction is now ready for COMET!!

Current Status (3) — Detector Construction —

StrECAL (for beam measurement)

- * Straw Stations, 5 Stations in total, are under construction.
- * Will be completed in 2024.

- * ECAL prototype successfully completed.
- * Detector assembly is ongoing.

CyDet (for µ-e conv. search)

- * CDC, completed and under commissioning with cosmic-ray.
- * Trigger hodoscope is under construction.

Current Status (3) — Detector Construction —

StrECAL (for beam measurement)

- * Straw Stations, 5 Stations in total, are under construction.
- * Will be completed in 2024.

- * ECAL prototype successfully completed.
- * Detector assembly is ongoing.

Towards the Start of COMET Phase-I

- * Construction on all items are ongoing at a fast pace.
 - Facility;
 - * The unfinished magnets, the "pion capture" solenoid and the "detector" solenoid, are scheduled to be completed during JFY2023 and delivered to J-PARC in early JFY2024.
 - Beamline commissioning will follow immediately.
 - Detector;
 - * CyDet. CDC commissioning with all FE/Trig-chain will continue. Trigger hodoscope will be completed in JFY2024.
 - * StrECAL. Straw tracker and ECAL, assembly is ongoing and expect to be completed by the end of JFY2024.
 - * Accelerator;
 - * Proton Extinction and Bunched-Slow Extraction efficiency has been confirmed to be OK. *i.e.* Ready for COMET Phase-I
- * All component for COMET Phase-I will be completed by the end of JFY2024, and the commissioning will be performed in 2025.

— Conclusions —

- * Charged Lepton Flavour Violation = Clear evidence of New Physics BSM
 - Muon is one of the best probe to explore New Physics
 - * eg. μ - $N \rightarrow$ e-N, μ ⁺ \rightarrow e+ γ , μ ⁺ \rightarrow e+e-e+, et al.
- * COMET is searching for μ - $N \rightarrow e$ -N at J-PARC with $\mathcal{O}(10^{-17})$ sensitivity
 - * Two-staged apploach
 - * Phase-I: Construct 1/4 of transport solenoid and perform "Direct beam measurement" & " μ - $N \rightarrow e$ -N Search w/ an intermediate sensitivity of $\mathcal{O}(10^{-15})$ "
 - * Phase-II: Construct remaining 3/4 of solenoid and carry out to search for μ - $N \rightarrow e$ -N w/ a full sensitivity of $\mathcal{O}(10^{-17})$
- * Towards the Start of Phase-I
 - Dedicated proton beam line, Completed
 - * Curved transport solenoid, Completed
 - * Unfinished solenoids, Will be delivered at beginning of JFY2024
 - * Detector construction, Will be completed by the end of JFY2024
 - * Commissioning Run will be performed in JFY2025, then the physics data-taking will follow.

backups

" μ - $N \rightarrow e$ -N" vs. " μ + $\rightarrow e$ + γ "

- Very similar, twin processes
- But, big differences from points-of-view of *Physics* and *Experiment*
- Searching for both processes is important

Differences in Physics

- sensitivity for *photonic* process and non-photonic process is different
- μ→eγ: photonic non-photonic
- μ-e conv : photonic non-photonic
 - → Very powerful tool to probe properties of new physics when the signal is discovered.

Differences in Experiment

µ→ey Search **Signal = Coincidence**

Dominant B.G. is **Accidental Overlap**

Challenge = Detector

DC beam! (PSI et.al.)

µN→eN Search Signal = Mono-E e

Dominant B.G. is Beam related

Challenge = Beam

Pulse beam! (J-PARC et.al.)

Other detector systems

Plastic Scintillator+WLS fibre ×4 layers, SiPM readout

Cosmic-ray Veto (CRV)

- Inefficiency less than 0.4%
- Radiation tolerance @10¹¹ n/cm²

Germanium Detetor (GeDet)

- Measure the muonic X-ray to determine the precise normalisation factor
- A prototype detector has been developed

Extinction Monitor

- Diamond detector has shown excellent performance to distinguish the single leakage proton in-between high-intense proton bunches
- GaN detector also being considered alternatively

- Can provide the timing and beam profile at the end of the curved solenoid
- Still under the discussions/R&D

Sensitivity Estimation for Phase-I

- §8GeV, 3.2kW proton beam is assumed
 - 2.5×10¹² protons/sec
 - ₹ 10-10 of extinction is supposed
- § 150 days (1.2×107 sec) running time
- Expected single event sensitivity

$$\mathcal{B}(\mu^{-} + Al \to e^{-} + Al) = \frac{1}{N_{\mu}^{stop} \cdot f_{cap} \cdot \mathcal{A}_{\mu-e}}$$

$$\mathcal{B}(\mu+A)\rightarrow e+A) = 3.1\times10^{-15}$$

Upper limit at 90% C.L.

$$\Rightarrow$$
 $B(\mu+A|\rightarrow e+A|) < 7.0×10−15$

cf. present limit < 7×10-13 (SINDRUM-II)

Expected backgrounds for Phase-I

Type	Background	Estimated events
Physics	Muon decay in orbit	0.01
	Radiative muon capture	0.0019
	Neutron emission after muon capture	< 0.001
	Charged particle emission after muon capture	< 0.001
Prompt beam	* Beam electrons	
•	* Muon decay in flight	
	* Pion decay in flight	
	* Other beam particles	
	All (*) combined	≤ 0.0038
	Radiative pion capture	0.0028
	Neutrons	$\sim 10^{-9}$
Delayed beam	Beam electrons	~ 0
	Muon decay in flight	~ 0
	Pion decay in flight	~ 0
	Radiative pion capture	~ 0
	Antiproton-induced backgrounds	0.0012
Others	Cosmic rays [†]	< 0.01
Total		0.032

[†] This estimate is currently limited by computing resources.

Summary of COMET Phase-I & Phase-II

	COMET-Phase-I	COMET-Phase-II
experiment starts (*)	in ~2025	Ready in 3 years after Phase-I completion
beam power	3.2kW (8GeV, 400nA)	56kW (8GeV, 7μA)
running time	150 days	2.0 x 10^7 (sec)
# of protons	3.0 x 10 [^] (19)	8.5 x 10^(20)
# of muon stops	1.5 x 10^(16)	2.0 x 10^(18)
muon rate	5.8 x 10^9	1.0 x 10^(11)
# of muon stops / proton	0.00052	0.00052
# of BG	0.02	0.3
S.E.S.	3.1 x 10^(-15)	2.6 x 10^(-17)
U.L. (90%CL.)	7.0 x 10^(-15)	6.0 x 10^(-17)

^{*} including the engineering run