

FLAVOUR TAGGING WITH THE ATLAS DETECTOR AT THE HL-LHC

Sébastien Rettie^{1,2}, on behalf of the ATLAS Collaboration ¹CERN, ²University College London

3500

z [mm]

High-Luminosity Large Hadron Collider (HL-LHC)

Flavour Tagging Relatively long lifetime of

B-hadrons (~1.5ps) can allow for significant displacement before decay Identification of jets containing heavy flavour hadrons (B,C) enables many exciting physics analyses such as di-Higgs production

Benefits and Challenges

- ✓ Increased instantaneous luminosity up to 7.5 x 1034 cm-2 s-1
- Larger integrated luminosity; 10x more data than what is collected during Run 1-3
- X More pile-up; ~200 interactions per bunch crossing

Inner Tracker (ITk) Upgrade

- Current ATLAS Inner Detector (ID) will be replaced by a new Inner Tracker (ITk) to maintain tracking performance in harsh HL-LHC conditions
- Extended forward pseudo-rapidity (|n|) from 2.5 to 4 provides increased tracking acceptance
- All-silicon design consisting of inner pixel (|n| < 4.0) and outer strip (|n| < 2.7) sub-detectors
- Latest ITk layout design 23-00-03 with innermost pixel layer closer to beam pipe (R = 34mm)

Jet Input

Track Input

 p_{T}

q/p

 $\mathrm{d}\eta$ $\mathrm{d}\phi$

 d_0

 $\sigma(\theta)$

 $\sigma(\phi)$

 $s(d_0)$

 $s(z_0\sin\theta)$ nPixHits

nStripHits

nPixShared

nStripShared

nPixSplit

nPixHoles

nStripHoles

nInnermostPixHits ${\bf nNextToInnermostPixHits}$ nInnermostPixSharednInnermostPixSplit

 $z_0 \sin \theta$ $\sigma(q/p)$

Flavour Tagging Algorithms

- Previous flavour tagging algorithms relied on "two-tiered" approach, where the outputs from manually optimised low-level taggers were fed into high-level taggers
- · New approach based on graph neural networks (GNNs): no need for manually optimised low-level algorithms!
- · GN1 trains jet flavour, vertexing, and track origin tasks simultaneously
- · Single algorithm is easy to maintain and tune for specific usecases, e.g. high-p_T flavour tagging
- · Naturally suited for variable number of unordered input tracks

Requirements	Pseudorapidity interval		
	$ \eta < 2.0$	$2.0 < \eta < 2.6$	$2.6 < \eta < 4.0$
pixel + strip hits	≥ 9	≥ 8	≥ 7
pixel hits	≥ 1	≥ 1	≥ 1
pixel + strip holes	≤ 2	≤ 2	≤ 2
$p_T \; [\mathrm{MeV}]$	> 900	> 500	> 500
$ d_0 $ [mm]	≤ 2.0	≤ 2.0	≤ 3.5
$ z_0\sin\theta $ [mm]	≤ 5.0	≤ 5.0	≤ 5.0

Light-jet rejection GN1 ($f_c = 0.05$) ATLAS Simulation Preliminary DL1d ($f_c = 0.09$) $\sqrt{s} = 14 \text{ TeV}, \langle \mu \rangle = 200$ •••• DIPS ($f_c = 0.17$) ITk Layout: 23-00-03 —·- MV2c10 $t\overline{t}$, $p_T > 20 \text{ GeV}$ 10 10 Ratio 0.9 0.7 8.0 b-jet tagging efficiency

Expected Performance

- Previous generation of taggers used for comparison: MV2c10 (Boosted Decision Tree), DIPS (Deep Sets), DL1d (Deep Neural Network)
- GN1 all-in-one tagger outperforms current taggers over a broad range of phase space and provides excellent performance in in the harsh HL-LHC environment
- Limited statistics for HL-LHC training (4M jets vs. 30M jets used for baseline model); expect further improvements with enlarged training dataset
- 2x improvement in light-jet rejection for the 70% $t\bar{t}$ working point compared to previous taggers
- · GN1 improves flavour tagging performance in all regions of phase space, including the high p_T regime

Summary & Outlook

- GN1 flavour tagging algorithm provides excellent flavour tagging performance in in the harsh HL-LHC environment
- Training procedure used for current detector configuration easily adapted to ITk geometry and increased tracking acceptance
- Next generation of flavour tagging algorithms will include updated architecture, optimized training, and enlarged training dataset

References

- ATL-PHYS-PUB-2022-027
- ATL-PHYS-PUB-2022-047
- TRIG-2018-08
- ATLAS-CONF-2022-035

