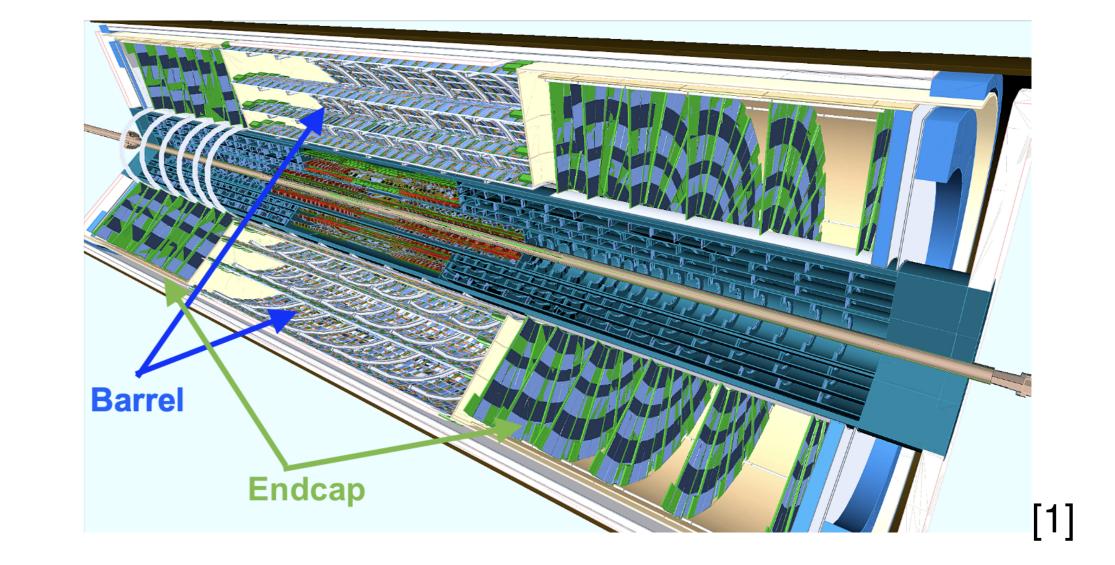
The ATLAS ITk Strip Detector for the Phase-II LHC Upgrade

Marta Baselga^{1,*} on behalf of the ATLAS ITk strip community

TU Dortmund University¹



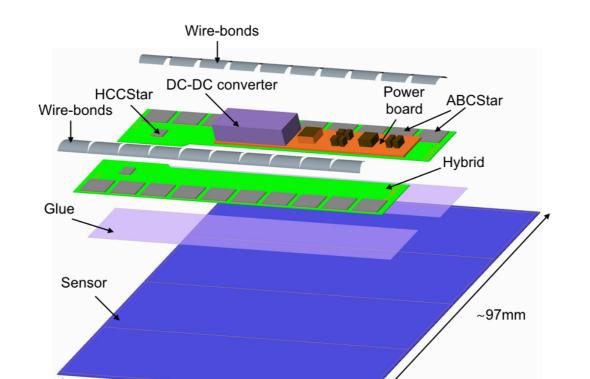
Bundesministerium für Bildung und Forschung

ATLAS ITk strips Phase-II upgrade

- The current inner detector of the ATLAS experiment has been designed to function in the environment of the Large Hadron Collider (LHC)
- The next upgrade of the LHC will result in 200 proton-proton interactions per bunch crossing, a 10x increase of instantaneous luminosity
- For the ATLAS Phase-II Upgrade the inner tracker of the ATLAS detector was redesigned and will be rebuild completely.
- The new detectors must be faster and highly segmented, radiation resistant and they will require much greater power
- The ATLAS Upgrade Inner Tracker (ITk) consist of several layers of silicon pixel and strip detectors
- Microstrip sensors are distributed in two parts
- 1. Barrel: central part of the detector
- 2. End-caps: covering the forward regions of the strip tracker, they consist of six disks per side

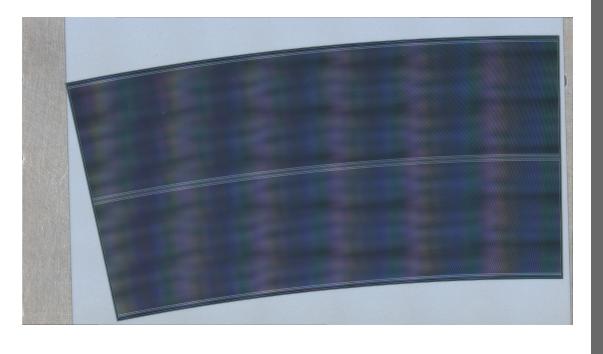
Barrel

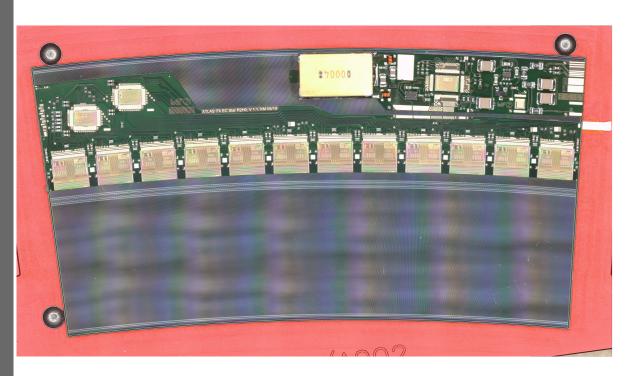
- The Barrel consists of 4 layers of staves
 - each stave containing 14 modules each side arranged in a cylindrical shape that encloses the beam
- All modules have a rectangular shape
- The strips sensors have two strip lengths:
- 1. $\sim 2.5 \text{ cm} \rightarrow \text{SS}$ (short strip)
- 2. \sim 5 cm \rightarrow LS (long strip)


[1]

Endcap

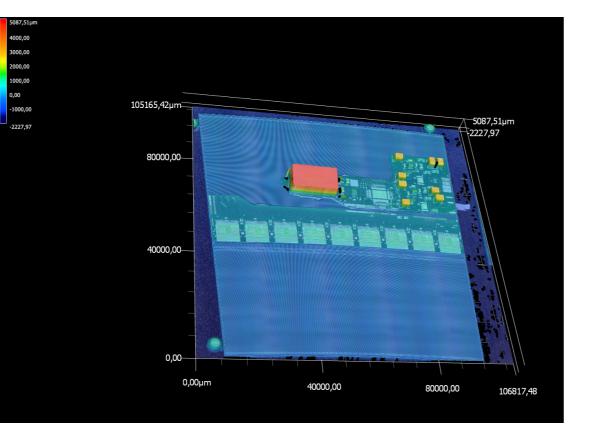
- The Endcap consists of 6 discs per forward region, so a total of 12 discs
- Each disc contains 32 petals, a wedge shaped support structure
- Each petal holds 6 modules (3 single modules and 3 split modules) to cover a radial area
- 6 different sensors shapes for the 6 different modules


Module assembly


- The module is the structure that has the strip sensor and its electronics:
 - power board glued to the strip sensor
 - hybrid that has the the ATLAS binary chips (ABC) for the readout electronics glued on the strip sensor
- The ABC chips, once glued, need to be wire bonded to the strips individually
- Modules have to be assembled with the required glue thickness and position A bonded tab (HV-tab) to connect the backplane of the sensor is bonded

Sensor production

- Despite initial delay, sensors are being produced by the foundry according to schedule
- Production of the sensors has almost reached 50%
- Strip isolation reduced due to high electrostatic charge on surface of the sensors
 - \rightarrow Mitigation strategies:
 - ionizing blower

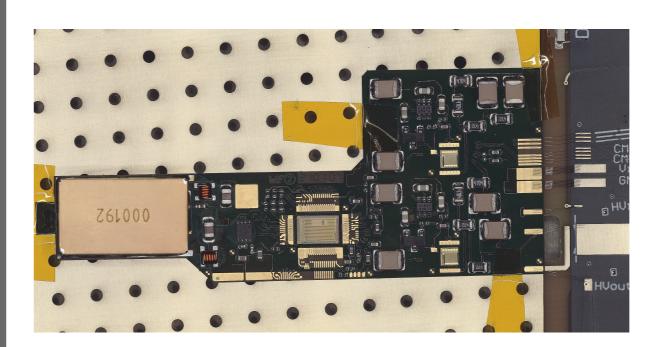


- Glue vendor discontinued the glue chosen for production and the second glue candidate is being used for module assembly
- A 3rd glue is being tested as a possible candidate
- Currently barrel modules are starting production and endcap modules are ready for production

QC/QA for modules

- Tests for module quality assurance include:
 - Precise weighing (the amount of glue)
 - Metrology (position and height of all components)
 - Visual inspection
 - Current voltage characterization
 - Electrical tests (room temperature and at −35 °C)

• UV light exposure

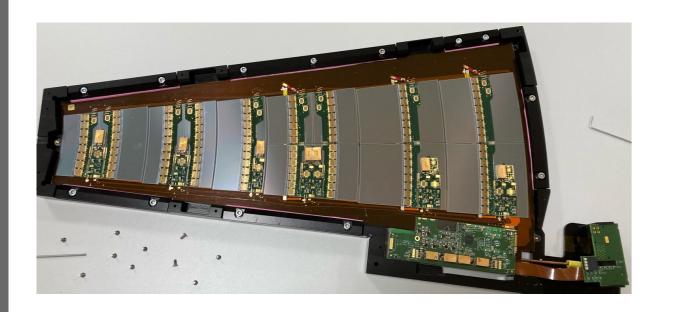

ASICs for modules

- ASICs are fully in production of the final versions:
 - AMACStar (Autonomous Monitor and Control chip)
 - HCCStar (Hybrid Control Chip)
 - ABCStar (ATLAS Binary Chip)
- ASICs production flow[2]:

Manufacture \rightarrow Probe \rightarrow Dice \rightarrow Pre-irradiate \rightarrow Distribute

- Hit loss due to issue writing to SRAM:
 - Mitigation strategy: invert clock polarity
 - Cross input wirebonds to hybrid control chip (HCC)
- Finalization of contract with new pre-irradiation vendor

Power board



Power board final design:

- Barrel final design mitigates cold noise (noise observed during thermal cycles)
- Endcap final design reduces noise
- Currently final design is finished and they are being produced

Module loading and system test

First staves and petals are being populated with the built modules, and tested to check the performance

- Barrel system test was successful
- First petals are being loaded for system test \rightarrow Endcap system test to be done

soon

Conclusions

- Sensor production is reaching 50 %
- ASICs are in final version production and final designs of the power board being approved
- ITk strip module production is ready to start for barrel and soon for endcap System test for the barrel finished successfully and endcap system test is on a finalizing stage

Acknowledgements

This work has been partially funded by the BMBF grant Verbundprojekt 05H2021 - Fortentwicklung des ATLAS-Experiments zum Einsatz am HL-LHC: Phase-II-Ausbau des Spurdetektors bei ATLAS

Contact Information

Marta Baselga Otto-Hahn-Str. 4a, Dortmund (Germany) Email: marta.baselga@cern.ch Phone: +49 40 8998-1781

References

Technical Design Report for the ATLAS Inner Tracker Strip Detector, CERN-LHCC-2017-005, ATLAS-TDR-025, 2017

[2] J. John John, P. Keener, ASICs Update, ATLAS Upgrade Week 2023

31st Lepton Photon Conference (17 - 21 July 2023, Melbourne)

*marta.baselga@cern.ch