

HIGG PHYSICS WIH ILC

- I. Bozovic Jelisavcic, VINCA Instiute of Nuclear Scences, Belgrade, SERBIA
- J. Tian, Tokyo University, JAPAN

On behalf of the ILC International Development Team Detector & Physics Working Group Supported by the grant IDEAS HIGHTONE-P No. 7699827

HIGHLIGHTS OF THE ILC HIGGS PHYSICS PROGRAM

THE LEAST UNDERSTOOD SECTOR OF THE SM

NEW PHYSCIS CALLS FOR PRECISION

IT'S NOT ONLY STATISTICS THAT **MATTERS**

Same significance (5 σ) for H \rightarrow bb, with 100 times less events than at 13 GeV LHC [1].

1. ATLAS arXiv:1808.08238; CMS arXiv:1808.08242, T. Ogawa, PhD thesis, 2018; 2. Snowmass White Paper on Global SMEFT Fits, arXiv: 2206.08326;

3. Liu, Wang, Zhang, arXiv: 1612.09284;

- EFT: Smaller the uncertainty larger the NP scale to be probed $(\sim 1/\Lambda^2)$ independently of a particular model;
- Most couplings can be probed below 1% relative statistical uncertainty [2];

advantage of high-energy e⁺e⁻ colliders; Unlimited by theoretical uncertainties unlike hh colliders;

Precision below 0.1% in BR constrain [3] is also confirmed in full simulation in several individual measurements ($H \rightarrow inv., H \rightarrow \phi \phi \rightarrow bb$);

CPV in the Higgs sector

- 125 GeV mass eigenstate of the SM-like Higgs boson could be a CPV mixture of scalar and pseudoscalar states;
- 1 TeV ILC is a favorable environment to measure CPV mixing angle in HZZ vertex (ZZ-fusion) with statistical dissipation not larger than 5 mrad for <10% mixture of the CP-odd state;

