Measurements of charmonia decays at BESIII

Yizhuo Zhou (on behalf of the BESIII Collaboration)

Introduction

The decays of charmonium states provide crucial information for a deeper understanding of non-perturbative behavior of Quantum Chromodynamics and test of various phenomenological models.

Large data samples collected at BESIII provide good opportunity for the study of decay dynamics of vector states, S-wave spin singlet states, and P-wave spin triplet states.

Beijing Spectrometer III(BESIII) at BEPCII

The BESIII detector records collisions provided by the BEPCII storage ring.

Beam energy: 1.0-2.47 GeV Luminosity: $1 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ at $\psi(3770)$ peak

Observation of $\psi(3770) ightarrow \eta J/\psi^{[1]}$

The D-wave $c\bar{c}$ interpretation of $\psi(3770)$, cannot explain the measured large non- $D\overline{D}$ decay width of the state, the abnormal ratio of $\psi(3770) \rightarrow D^+D^-$ and $\psi(3770) \rightarrow D^0 \overline{D}{}^0$

Coherent fit: $\sigma_{co} = \left| C \cdot \sqrt{\Phi(s)} + e^{i\phi_1} BW_{\psi(3770)} + e^{i\phi_2} BW_{\psi(4040)} + e^{i\phi_3} BW_{Y(4230)} + e^{i\phi_4} BW_{Y(4390)} \right|^2$

- Various theoretical models are developed to solve these puzzles, $\psi(3770) \rightarrow$ $\eta J/\psi$ severs as an input in theoretical calculations
- **Data sample**: 2931.8 pb⁻¹ ψ (3770) sample + XYZ sample
- **Reconstruction**: $e^+e^- \rightarrow \eta J/\psi$, $J/\psi \rightarrow \mu^+\mu^-$, $\eta \rightarrow \gamma\gamma$
- Fitting method:

- **Born Cross section** at 3.773 GeV: $\sigma(e^+e^- \to \eta J/\psi) = (8.88 \pm 0.87 \pm 0.42) pb$
- **Branching fractions:**

Parameters	Coherent fit				Incoherent fit
	Solution1	Solution2	Solution3	Solution4	
\mathcal{B} r($\psi(3770)$ $\rightarrow \eta J/\psi) \times 10^{-4}$	11.3 ±5.9±1.1	11.6±6.0±1.1	11.2 <u>+</u> 5.8 <u>+</u> 1.1	11.5±6.0±1.1	8.7±1.0±0.8
ϕ (rad)	3.9±0.6±0.07	4.2±0.6±0.09	3.7±0.6±0.05	4.1±0.6±0.08	-

- First **observation** of $\psi(3770) \rightarrow \eta J/\psi$ (Coherent fit 7.9 σ , Incoherent fit 8.3 σ)
- There exists substantial interference effect, especially between $\psi(3770)$ and highly excited vector charmonium(-like) states

Evidence for the $\eta_c(2S) o \pi^+\pi^-\eta$ decay^[2]

- The knowledge about $\eta_c(2S)$ is limited in PDG.
- $\mathcal{B}r(\eta_c(2S) \to h)/\mathcal{B}r(\eta_c \to h)$ predicted to be 12%[PRD 44 1597 (1991)] or 100%[CTP 25 471 (1996)], need to be clarified
- **Data sample**: 448 million $\psi(2S)$ events
- **Reconstruction**: $\psi(2S) \rightarrow \gamma \eta_c(2S), \eta_c(2S) \rightarrow \pi^+ \pi^- \eta, \eta \rightarrow \gamma \gamma$

- First **evidence** of $\eta_c(2S) \rightarrow \pi^+\pi^-\eta$ (3.5 σ)
- **Branching fractions:**

 $\mathcal{B}r(\psi(2S) \to \gamma \eta_c(2S)) \times \mathcal{B}r(\eta_c(2S) \to \pi^+\pi^-\eta) = (2.97 \pm 0.81 \pm 0.26) \times 10^{-6}$ $\mathcal{B}r(\eta_c(2S) \to \pi^+\pi^-\eta) = (42.4 \pm 11.6 \pm 3.8 \pm 30.0) \times 10^{-4}$

The ratio of the branching fractions:

 $\frac{\mathcal{B}r(\eta_c(2S)\to \pi^+\pi^-\eta)}{1} = 0.25 \pm 0.20$

Helicity amplitude analysis of $\chi_{cI} o \phi \phi^{[3]}$

- Previously observed $\chi_{cI} \rightarrow \phi \phi$ demonstrate that the decay mechanism of χ_{cI} is not well understood
- The quark-pair creation model and charm-loop contributions have been proposed to interpret the experimental result of the rations of the helicity amplitudes are believed to be sensitive to different models
- **Data sample**: 448 million $\psi(2S)$ events
- **Reconstruction**: $\psi(2S) \rightarrow \gamma \chi_{cJ}$, $\chi_{cJ} \rightarrow \phi \phi$, $\phi \rightarrow K^+K^-$
- **Amplitude analysis** is performed to extract helicity amplitudes
- **Branching fractions:**

Brainching fractions.

$$\mathcal{B}r(\chi_{c0} \to \phi\phi) = (8.59 \pm 0.27 \pm 0.20) \times 10^{-4}$$

 $\mathcal{B}r(\chi_{c1} \to \phi\phi) = (4.26 \pm 0.13 \pm 0.15) \times 10^{-4}$
 $\mathcal{B}r(\chi_{c2} \to \phi\phi) = (12.67 \pm 0.28 \pm 0.33) \times 10^{-4}$

Amplitude ratios:

 $\chi_{c0} \rightarrow \phi \phi$:

$$|F_{1,1}^0|/|F_{0,0}^0| = 0.299 \pm 0.003 \pm 0.019$$

 $\chi_{c2} \rightarrow \phi \phi$:

$$|F_{0,1}^2|/|F_{0,0}^2| = 1.265 \pm 0.054 \pm 0.079$$

 $|F_{1,-1}^2|/|F_{0,0}^2| = 1.450 \pm 0.097 \pm 0.104$
 $|F_{1,1}^2|/|F_{0,0}^2| = 0.808 \pm 0.051 \pm 0.009$

 RM_{γ} (GeV/ c^2)

- For the decay of χ_{c1} , no evidence of identical particle symmetry breaking
- For the decay of χ_{c0} , consistent with the pQCD prediction
- For the decay of χ_{c2} , the $D\overline{D}$ loop model[PRD 103 096006(2021)] ruled out due to the large deviation, while the pQCD model and the ³P₀ cannot describe the measurements either

Observation of the decay $\chi_{cI} \to \Omega^{-} \overline{\Omega}^{+}$ [4]

- Baryonic χ_{cJ} decays provide useful input to theoretical calculations involving the color-octet wave function
- **Data sample**: 2.708 billion $\psi(2S)$ events

Partial Reconstruction:
$$\psi(2S) \rightarrow \gamma \chi_{cJ}$$

$$\chi_{cJ} \to \Omega^{-} \overline{\Omega}^{+}$$

$$\Omega^{-}(\overline{\Omega}^{+}) \to \Lambda K^{-}(\overline{\Lambda}K^{+})$$

$$\Lambda(\overline{\Lambda}) \to p\pi^-(\bar{p}\pi^+)$$

First **observation** of $\chi_{c0.1.2} \to \Omega^{-}\overline{\Omega}^{+}$ $(5.6\sigma, 6.4\sigma, 18\sigma)$

Branching fractions:

 $\mathcal{B}r(\chi_{c0} \to \Omega^{-}\overline{\Omega}^{+}) = (3.51 \pm 0.54 \pm 0.29) \times 10^{-5}$ $\mathcal{B}r(\chi_{c1} \to \Omega^{-}\overline{\Omega}^{+}) = (1.49 \pm 0.23 \pm 0.10) \times 10^{-5}$ $\mathcal{B}r(\chi_{c2} \to \Omega^{-}\overline{\Omega}^{+}) = (4.52 \pm 0.24 \pm 0.18) \times 10^{-5}$

• Measured $\mathcal{B}r(\chi_{c0} \to \Omega^-\overline{\Omega}^+)$ is one order of magnitude smaller than those of χ_{c0} decaying to baryon antibaryon pairs with spin 1/2 and 3/2 , which will be useful for theorists to investigate the helicity selection rule evading mechanism in χ_{c0} decays.

Outlook

BESIII has accumulated about 2.7 billion $\psi(2S)$ data and will have 20 fb⁻¹ $\psi(3770)$ data in near future.

- Improved measurements of $\psi(3770) \rightarrow \pi^+\pi^- J/\psi$, $\pi^0 J/\psi$, $\gamma \chi_{cJ}$, etc., in the future, as well as a finer scan around the $\psi(3770)$ are desirable to reveal the nature of this resonance.
- More searches on new decay modes and more precise measurements of the $\eta_c(2S)$ decays will shed light on decay mechanisms of the spin singlet charmonium states.
- The helicity amplitude analysis of $\chi_{cJ} o \phi \phi$ can provide more constraints for further developing the models.
- The $\chi_{cI} \to \Omega^- \overline{\Omega}^+$ decay can be used to probe the spin polarization of Ω^- baryon in the charmonium production at the future tau-charm factories.

References

- 1. M. Ablikim et al. (BESIII Collaboration), PRD 107, L091101 (2023).
- 2. M. Ablikim et al. (BESIII Collaboration), PRD 107, 052007 (2023).
- 3. M. Ablikim et al. (BESIII Collaboration), JHEP, 05(2023)069.
- 4. M. Ablikim et al. (BESIII Collaboration), PRD 107, 092004 (2023).