

The Phase 2 upgrade of the CMS Outer Tracker

Krisztina Márton* on behalf of the CMS Collaboration

LP2023: 31st International Symposium on Lepton Photon Interactions at High Energies, 17-21 Jul 2023, Melbourne (Australia)

High Luminosity LHC starts colliding particles in 2029

- 14 TeV center-of-mass energy, 25 ns bunch-crossing
- peak instantaneous luminosities up to 5-7.5 x 10^{34} cm⁻²s⁻¹, pileup ~ 140-200
- 10 years of operation → 3000-4000 fb⁻¹ integrated luminosity

CMS will replace its whole Tracker detector for the start of the new data taking phase (see the talk "The CMS tracker upgrade for HL-LHC" by Alessandro Rossi for details)

Requirements fot the Phase 2 Outer Tracker (OT)

- increased radiation hardness
- 10^{15} n_{eq} /cm² expected fluence in the inner layers
- higher granularity, better track separation
- reduced material budget
- compatibility with higher data rates and longer trigger latency of 12.5 µs
- provide tracking information to the L1 trigger

p_T modules

- stand-alone units, connected directly to the detector back-end electronics
- made from two silicon sensors separated by a few millimeters and read out by common front-end electronics
- chosen sensor technology: Float Zone n-in-p type silicon with 290 µm active thickness [2]
- 2 types of modules: 2S and PS, both with different sensor spacings
- modules are assembled manually at several CMS institutes
- required precision:
 - distance perpendicular to the strips of $\Delta x < 50 \ \mu m$
 - distance along the strips of $\Delta y < 100 \mu m$
 - tilt angle between the strips (strips and macro-pixels) smaller than 400 µrad (800 µrad) for the 2S (PS) modules

PS modules

- one micro-strip sensor
- 2 columns of 960 strips
- single cell size: 2.5 cm x 100 μm
- one macro-pixel sensor
 - 32 x 960 pixels
 - single cell size: 1.5 mm x 100 μm
- 16 MPA chips, bump-bonded to the bottom side of the macro-pixel sensor
- two front-end hybrids (PSFEH) on the two sides, wire-bonded to the sensors
- separate electronics for powering (PSPOH) and read-out (PSROH) to achive smaller module size

2S module

TBPS

PS modules

mounted on rings

• three inner layers of the barrel, built from

• in the flat section modules are mounted

in the tilted section modules are

on planks oriented along the beam axis

1200 <u>1000</u>

TILTED SECTION

800

2S modules

- two silicon micro-strip sensors
 - each with 2 columns of 1016 strips
- single cell size: 5 cm x 90 μm
- two front-end hybrid (2SFEH) electronics on the two sides of the sensors, wire-bonded to the strips

CMS Phase 2 OT layouts and mechanics

- built from semiconductive silicon modules
- 7608 2S modules +5592 PS modules - 190 m² total silicon area, with 213 million channels
- barrel section with six cylindrical layers
- + two endcaps with five layers of double-sided disks at the two ends of the barrel
- lightweight mechanical support structure made from carbon fiber
- cooling based on an evaporative CO₂ system
 - operating temperature ~ -35 °C

- in the endcaps, modules are mounted on half-disks, four half-disks form one detector layer
- PS modules at r < 60 cm
- 2S modules at r > 60 cm

Contribution to the L1 trigger

TB2S

2S modules

along the beam axis

TEDD

2000

Modules are able to provide tracking information to the first trigger level by measuring the transverse momentum of the tracks and sending out self-selected information at every bunch-crossing (40 MHz).

_ 1.8

-2.0

-2.4

-2.6 -2.8 -3.0

z [mm]

2500

• three outer layers of the barrel, built from

modules are mounted on ladders oriented

For details, check the talk "Level-1 Track Finding at CMS for the HL-LHC" by Riu Zou

- charged particles bend in the magnetic field of the CMS detector with a transverse momentum dependent radius and generate signals in both sensors when passing through a module
- hits from the bottom and top sensors are matched → if they are within a pre-defined window, they will be combined to form a "stub" (short track segment)
- stub information is sent out to the back-end track finder system at every bunch crossing from each modules
- back-end performs track finding in two steps: pattern recognition and track fitting

Hybrid electronics for the OT modules

Front-end hybrids (FEH)

- 4-layer, high density flexible circuits, laminated to carbon-fibre stiffener and folded back to allow wire-bonding to the top and bottom side sensors
- Al-N spacers to adjust the thickness of the hybrid to the module spacing
- CTE compensators to eliminate the bow (only needed for the 2S)
- custom ASIC readout chips, flip-chip soldered directly to the hybrid and underfilled - 8 x CBC3 chips for the 2S and 8 x SSA chips for the PS modules + 1 CIC for both

Service electronics

- responsible for powering, controlling, and data-transfer
- merge data from both FEHs and send it out via a single optical fibre to the backend system
- powering scheme using DC-DC converters → keep power losses and voltage drops at acceptable level

Prototyping of the p_T modules

module prototyping had been ongoing for many years

The prototyping phase of the module components is finished.

- functional modules with the required accuracy have been assembled
- prototype modules have been studied at various test beam facilities (CERN, DESY, Fermilab) and the full readout chain has been exercised in test setups [3-5] - stub finding mechanism proven to work as expected, no significant drop in the performance with

Folded Flex

irradiated sensors - validated the funcionality of the ASICs and the design of the hybrid electronics

Production of sensors and hybrid electronics for the Phase 2 Outer Tracker has been already started.

• sub-detector mechanical structure prototypes have been built and equipped with modules

Quality assurance (QA) and quality control (QC) during the production

- large number of modules (>13000) have to be built manually in the next years with high accuracy
- modules will operate under extreme environmental conditions, without the possibility for repair or replace due to their inaccessable location \rightarrow QA is a crucial part of the production
- several assembly centers → common set of tooling and procedures to guarantee similar quality
- every components are going to be tested before assembly
 - sensors are tested by the manufacturer and inspected also at the Quality Control Centers [6]
 - hybrid electronics
 - tested by the manufacturer, including a passive thermal cycling and a quick electrical test
 - visual inspection of all hybrids at CERN and Wigner RCP
 - functional test of a subset of hybrids at CERN, INFN Catania and INFN Genova
- each module will undergo a final test before assembled onto the detector support structure

References

- 1) The Phase-2 Upgrade of the CMS Tracker Technical Design Report, CERN-LHCC- 2017-009, CMS-TDR-014, https://cds.cern.ch/record/2272264
- 2) Selection of the silicon sensor thickness for the Phase-2 upgrade of the CMS Outer Tracker; The Tracker group of the CMS collaboration, 2021 JINST 16 P11028, https://doi.org/10.1088/1748-0221/16/11/P11028
- 3) Beam test performance of prototype silicon detectors for the Outer Tracker for the Phase-2 Upgrade of CMS; The Tracker Group of the CMS collaboration, 2020 JINST 15 P03014, https://doi.org/10.1088/1748-0221/15/03/P03014
- 4) Beam test performance of a prototype module with Short Strip ASICs for the CMS HL-LHC tracker upgrade; The Tracker Group of the CMS collaboration, 2022 JINST 17 P06039, https://doi.org/10.1088/1748-0221/17/06/P06039 5) Test beam performance of a CBC3-based mini-module for the Phase-2 CMS Outer Tracker before and after neutron irradiation; W. Adam et al, 2023 JINST 18 P04001, https://doi.org/10.1088/1748-0221/18/04/P04001
- 6) Silicon sensors for the Phase-2 upgrade of the CMS Outer Tracker; status and early results from the production phase; Damanakis Konstantinos, NIM A 1040 (2022) 167034, https://doi.org/10.1016/j.nima.2022.167034 7) Software tools for hybrid quality control for the CMS Outer Tracker Phase-2 Upgrade, I. Mateos Domínguez et al 2023 JINST 18 C01048, https://doi.org/10.1088/1748-0221/18/01/C01048

