NUCLEON STRUCTURE FUNCTIONS FROM A LATTICE COMPTON AMPLITUDE CALCULATION

K. U. Can (Adelaide), M. Batelaan (Adelaide), A. Hannaford-Gunn (Adelaide),
R. Horsley (Edinburgh), Y. Nakamura (Riken|Kobe), H. Perlit (Lbipzig), P. E.L. Rakow (Liverpool), G. Schibrholz (Desy), H. Stüben (Hamburg), R. D. Young (Adelaide), J. M. Zanotti (Adelaide)

(CSSM \& QCDSF/UKQCD Collaborations)

\bullet M. Batelaan et al. Phys.Rev.D 107 (2023) 5, 054503 [2209.04141] \bullet K. U. Can et al., Phys.Rev.D 102 (2020) 114505 [2007.01523]

MOTIVATION

sfigniti grsynt

Results

- Nucleon is a composite object of (anti-)quarks and gluons,
- Longitudinal distribution of its constituents (partons) are encoded in structure functions (SFs).
- At energies $Q^{2} \gg M_{N}^{2}$, and excluding the resonances, structure functions reduce to parton distribution functions (PDFs).
- We aim to: Determine the SFs, from a first-principles approach,
- Constraint the low- and high- x regions of PDFs better,
- Identify the Q^{2} region where power corrections become relevant.

- The forward Compton amplitude is described by the time-ordered product of electromagnetic currents sandwiched btw. nucleon states,

$$
\begin{aligned}
T_{\mu \nu}(p, q) & =\int d^{4} z e^{i q \cdot z} \rho_{s s^{\prime}}\left\langle p, s^{\prime}\right| \mathcal{T}\left\{J_{\mu}(z) J_{\nu}(0)\right\}|p, s\rangle \\
& =\left(g_{\mu \nu}+\frac{q_{\mu} q_{\nu}}{q^{2}}\right) \mathcal{F}_{1}\left(\omega, Q^{2}\right)+\frac{\hat{P}_{\mu} \hat{P}_{\nu}}{p \cdot q} \mathcal{F}_{2}\left(\omega, Q^{2}\right)
\end{aligned}
$$

- $T_{\mu \nu}$ is parametrised by two Compton structure functions (SFs) \mathcal{F}_{i}, and we have defined, $\hat{P}_{\mu} \equiv p_{\mu}-q_{\mu}\left(p \cdot q / q^{2}\right)$, with $Q^{2}=-q^{2}$ and $\omega=2(p . q) / Q^{2}$.
- Compton SFs can be expanded in terms of the moments of DIS structure functions, e.g.,

$$
\begin{equation*}
\mathcal{F}_{2}\left(\omega, Q^{2}\right)=\sum_{n=1}^{N} 4 \omega^{2 n-1} \underbrace{\int_{0}^{1} d x x^{2 n-2} F_{2}\left(x, Q^{2}\right)}_{M_{2 n}^{(2)}\left(Q^{2}\right)} \tag{Eq.1}
\end{equation*}
$$

MBTHOD: FEYNMAN-HELLMANN THEOREM (FHT)

$\frac{\partial E_{\lambda}}{\partial \lambda}=\left\langle\phi_{\lambda}\right| \frac{\partial H_{\lambda}}{\partial \lambda}\left|\phi_{\lambda}\right\rangle$

- FHT: In quantum mechanics, at $1^{\text {st }}$ order, expectation value of a perturbed system is related to the energy shift.
- In QCD, we add an oscillating EM background field to the action,
$S_{Q C D} \rightarrow S_{Q C D}(\lambda)=S_{Q C D}+\lambda \int d^{4} z \cos (\mathbf{q} \cdot \mathbf{z}) J_{\mu}(z)$
- and extend the FHT to $2^{\text {nd }}$ order to access the Compton amplitude,
$\left.\frac{\partial^{2} E_{N_{\lambda}}(\mathbf{p})}{\partial \lambda^{2}}\right|_{\lambda=0}=-\frac{1}{2 E_{N}(\mathbf{p})} \overbrace{\int d^{4} z e^{i \mathbf{q} \cdot \mathbf{z}}\langle N(p)| \mathcal{T}\left\{J_{\mu}(z) J_{\mu}(0)\right\}|N(p)\rangle}^{+(q \rightarrow-q)}$
- Finally, we calculate a ratio of 2-point Green's functions as sketched, to extract the Compton amplitude, $T_{\mu \mu}(p, q)$.

Fig. 1: ω dependence of the Compton SFs. Shaded bands are fits in the form of Eq. 1.

Fig. 2: Q^{2} dependence of the lowest moments of $F_{2}\left(x, Q^{2}\right)$.

OUTLOOK

- Determining the x-dependence of PDFs is a work in progress.
- We are extending our calculations to extract the moments of polarised, g_{1}, g_{2}, and the unpolarised parity-violating, F_{3}, structure functions.

