
• Determining the x-dependence of PDFs is a work
in progress.
• We are extending our calculations to extract the
moments of polarised, g1, g2, and the unpolarised
parity-violating, F3, structure functions.

OUTLOOK
Fig. 2: Q² dependence of the lowest moments of F²(x,Q² ).
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Fig. 1: 𝟂 dependence of the Compton SFs. Shaded
bands are fits in the form of Eq. 1.
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Figure 3.1: The Feynman diagram
for deep inelastic scattering. As with all Feynman diagrams

in this thesis, time increases left to right.

•
the virtual photon exchanged by the electron and nucleon has momentum

q =
k�k 0.

Given these variables, it is useful to define some Lorentz scalars.

•
⌫ =

P
·q

M , which is the energy transferred to the nucleon in the nucleon’s rest frame:

⌫ =
k 0�

k 00.

•
Q

= p
�q 2, which

is always real, since q µ

is spacelike.
This is the momentum

transferred to the nucleon.

•
x =

Q 2
2P

·q , the ‘Bjorken scaling variable’. In the nucleon’s rest frame, this is propor-

tional to the ratio of momentum
transfer to energy transfer.

•
!

=
x �

1, the inverse Bjorken variable. This variable is particularly useful for the

OPE.•
M

, the nucleon mass.

•
m
f the mass of a quark of flavour f .

•
M

2
X =

(P
+

q) 2, the invariant mass of the outgoing state X.

Physical Region
of Scalars

Now
we will determine what the physically allowed region is for each Lorentz scalar defined

above.First, note that in the nucleon’s rest frame the electron transfers energy to the proton

and hence ⌫ �
0, and since this is a Lorentz scalar it is non-negative in all frames.

Then, since q =
k�k 0

and k and k 0
are future-pointing timelike vectors, we can use the

inverse Minkowski triangle inequality to get q 2

=
(k �

k 0) 2 |k 2�
k 02| =

m 2
e� �

m 2
e� =

0

(see appendix A). Therefore, q is a spacelike vector, and hence �q 2

=
Q 2�

0. The region

for inelastic scattering starts at Q 2&
2GeV 2

.

In inelastic scattering, the momentum
transfer to the nucleon is very large, and hence

M
2

X =
(P

+
q) 2&

M
2. Therefore,

P 2

+
2P · q �

Q 2&
P 2

)
2P · q &

Q 2

)
! = 2P · qQ 2 &

1.

(3.1)

Hence the physical region of x is [0, 1], and for !
it is [1,1

).

~
Ordinary quark propagator
Perturbed quark propagator

• Finally, we calculate a ratio of 2-point Green’s functions as sketched,
to extract the Compton amplitude, .

• In QCD, we add an oscillating EM background field to the action,

• and extend the FHT to 2nd order to access the Compton amplitude,

• FHT: In quantum mechanics, at 1st
order, expectation value of a perturbed
system is related to the energy shift.

METHOD: FEYNMAN-HELLMANN THEOREM (FHT)

(Eq. 1)

• T𝞵𝞶 is parametrised by two Compton structure functions (SFs), , and
we have defined, , with Q² = -q² and 𝟂=2(p.q)/Q².

• Compton SFs can be expanded in terms of the moments of
DIS structure functions, e.g.,
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Figure
3.1: The Feynman diagram

for deep inelastic scattering. As with all Feynman diagrams

in this thesis, time increases left to right.

•
the virtual photon exchanged by the electron and nucleon has momentum

q =
k�k 0.

Given these variables, it is useful to define some Lorentz scalars.

•
⌫ =

P
·q

M , which is the energy transferred to the nucleon in the nucleon’s rest frame:

⌫ =
k 0�

k 00
.

•
Q

= p
�q 2, which

is always real, since q µ

is spacelike.
This is the momentum

transferred to the nucleon.

•
x =

Q 2
2P

·q , the ‘Bjorken scaling variable’. In the nucleon’s rest frame, this is propor-

tional to the ratio of momentum
transfer to energy transfer.

•
!

=
x �

1
, the inverse Bjorken

variable. This variable is particularly
useful for the

OPE.•
M

, the nucleon mass.

•
m
f the mass of a quark of flavour f .

•
M

2
X =

(P
+

q) 2, the invariant mass of the outgoing state X.

Physical Region
of Scalars

Now
we will determine what the physically allowed region is for each Lorentz scalar defined

above.First, note that in the nucleon’s rest frame the electron transfers energy to the proton

and hence ⌫ �
0, and since this is a Lorentz scalar it is non-negative in all frames.

Then, since q =
k�k 0

and k and k 0
are future-pointing timelike vectors, we can use the

inverse Minkowski triangle inequality to get q 2

=
(k �

k 0) 2 |k 2�
k 02| =

m 2
e� �

m 2
e� =

0

(see appendix A). Therefore, q is a spacelike vector, and hence �q 2

=
Q 2

�
0. The region

for inelastic scattering starts at Q 2&
2GeV 2

.

In inelastic scattering, the momentum
transfer to the nucleon is very large, and hence

M
2

X =
(P

+
q) 2&

M
2
. Therefore,

P 2

+
2P · q �

Q 2&
P 2

)
2P · q &

Q 2

)
!

= 2P · qQ 2 &
1.

(3.1)

Hence the physical region of x is [0, 1], and for !
it is [1,1

).
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Figure
3.1: The Feynman diagram

for deep inelastic scattering. As with all Feynman diagrams

in this thesis, time increases left to right.

•
the virtual photon exchanged by the electron and nucleon has momentum

q =
k�k 0.

Given these variables, it is useful to define some Lorentz scalars.

•
⌫ =

P
·q

M , which is the energy transferred to the nucleon in the nucleon’s rest frame:

⌫ =
k 0�

k 00
.

•
Q

= p
�q 2, which

is always real, since q µ

is spacelike.
This is the momentum

transferred to the nucleon.

•
x =

Q 2
2P

·q , the ‘Bjorken scaling variable’. In the nucleon’s rest frame, this is propor-

tional to the ratio of momentum
transfer to energy transfer.

•
!

=
x �

1
, the inverse Bjorken

variable. This variable is particularly
useful for the

OPE.•
M

, the nucleon mass.

•
m
f the mass of a quark of flavour f .

•
M

2
X =

(P
+

q) 2, the invariant mass of the outgoing state X.

Physical Region
of Scalars

Now
we will determine what the physically allowed region is for each Lorentz scalar defined

above.First, note that in the nucleon’s rest frame the electron transfers energy to the proton

and hence ⌫ �
0, and since this is a Lorentz scalar it is non-negative in all frames.

Then, since q =
k�k 0

and k and k 0
are future-pointing timelike vectors, we can use the

inverse Minkowski triangle inequality to get q 2

=
(k �

k 0) 2 |k 2�
k 02| =

m 2
e� �

m 2
e� =

0

(see appendix A). Therefore, q is a spacelike vector, and hence �q 2

=
Q 2

�
0. The region

for inelastic scattering starts at Q 2&
2GeV 2

.

In inelastic scattering, the momentum
transfer to the nucleon is very large, and hence

M
2

X =
(P

+
q) 2&

M
2
. Therefore,

P 2

+
2P · q �

Q 2&
P 2

)
2P · q &

Q 2

)
!

= 2P · qQ 2 &
1.

(3.1)

Hence the physical region of x is [0, 1], and for !
it is [1,1

).
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Q2 )

Power Corrections:
Higher-twist and
Target MassJ𝞵 J𝛎

Leading
Twist
(PDFs)

Compton
Amplitude

• The forward Compton amplitude is described by the time-ordered
product of electromagnetic currents sandwiched btw. nucleon states,

FORWARD COMPTON AMPLITUDE

• Nucleon is a composite object of (anti-)quarks and gluons,
• Longitudinal distribution of its constituents (partons)
are encoded in structure functions (SFs).

• At energies , and excluding the resonances, structure
functions reduce to parton distribution functions (PDFs).

• We aim to: Determine the SFs, from a first-principles approach,
• Constraint the low- and high-x regions of PDFs better,
• Identify the Q² region where power corrections become relevant.
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