

INTRODUCTION

- We consider a new variant of $U(1)_{L_{\mu}-L_{\tau}}$ gauge extension of Standard Model, containing three additional neutral fermions N_e, N_μ, N_τ , along with a scalar Leptoquark $(\bar{3}, 1, 1/3)$ and an inert scalar doublet, to study the phenomenology of light dark matter, neutrino mass generation and flavour anomalies on a single platform.
- The lightest mass eigenstate of the N_{μ}, N_{τ} neutral fermions plays the role of dark matter.
- The light gauge boson associated with $U(1)_{L_{\mu}-L_{\tau}}$ gauge group mediates dark to visible sector and helps to obtain the correct relic density.
- We constrain the model parameters by using the recent flavor anomalies in $b \rightarrow s$ transitions and then show the implication on the branching ratios of some rare semileptonic $B \rightarrow (K^{(*)}, \phi) + \text{missing energy, processes.}$

PARTICLE CONTENT

	Field	$SU(3)_C \times SU(2)_L \times U(1)_Y$	$U(1)_{L_{\mu}-L_{\tau}}$
Fermions	$Q_L \equiv (u,d)_L^T$	$({f 3},{f 2},1/6)$	0
	u_R	$({f 3},{f 1},2/3)$	0
	d_R	$({f 3},{f 1},-1/3)$	0
	$\ell_L \equiv e_L, \mu_L, au_L$	$({f 1},{f 2},-1/2)$	0, 1, -1
	$\ell_R \equiv e_R, \mu_R, \tau_R$	$({f 1},{f 1},-1)$	0, 1, -1
	$N_e, N_\mu, N_ au$	(1 , 1 ,0)	0, 1, -1
Scalars	Н	(1, 2, 1/2)	0
	η	$(1, 2, \ 1/2)$	0
	ϕ_2	(1, 1, 0)	2
	S_1	$(ar{3},1,1/3)$	-1
Gauge bosons	$W^i_{\mu} \ (i=1,2,3)$	(1, 3, 0)	0
	B_{μ}	(1 , 1 ,0)	0
	V_{μ}	(1 , 1 ,0)	0

Table 1: Fields and their charges of the proposed $U(1)_{L_{\mu}-L_{\tau}}$ model.

LAGRANGIAN OF THE MODEL

• The Lagrangian of the present model is given as

$$\begin{split} \mathcal{L}_{G} &= -\frac{1}{4} \left(\hat{\mathbf{W}}_{\mu\nu} \hat{\mathbf{W}}^{\mu\nu} + \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} + \hat{V}_{\mu\nu} \hat{V}^{\mu\nu} + 2 \sin \chi \hat{B}_{\mu\nu} \hat{V}^{\mu\nu} \right), \\ \mathcal{L}_{f} &= -\frac{1}{2} M_{ee} \overline{N_{e}^{c}} N_{e} - \frac{f_{\mu}}{2} \left(\overline{N_{\mu}^{c}} N_{\mu} \phi_{2}^{\dagger} + \text{h.c.} \right) - \frac{f_{\tau}}{2} \left(\overline{N_{\tau}^{c}} N_{\tau} \phi_{2} + \text{h.c.} \right) \\ &- \frac{1}{2} M_{\mu\tau} (\overline{N_{\mu}^{c}} N_{\tau} + \overline{N_{\tau}^{c}} N_{\mu}) - \sum_{l=e,\mu,\tau} \left(Y_{ll} (\overline{\ell_{L}})_{l} \tilde{\eta} N_{lR} + \text{h.c.} \right) - \sum_{q=d,s,b} \left(y_{qR} \ \overline{d_{qR}^{c}} S_{1} N_{\mu} + \text{h.c.} \right), \\ \mathcal{L}_{G-f} &= -g_{\mu\tau} \overline{\mu} \gamma^{\mu} \mu \hat{V}_{\mu} + g_{\mu\tau} \overline{\tau} \gamma^{\mu} \tau \hat{V}_{\mu} - g_{\mu\tau} \overline{\nu_{\mu}} \gamma^{\mu} (1 - \gamma^{5}) \nu_{\mu} \hat{V}_{\mu} \\ &+ g_{\mu\tau} \overline{\nu_{\tau}} \gamma^{\mu} (1 - \gamma^{5}) \nu_{\tau} \hat{V}_{\mu} - g_{\mu\tau} \overline{N_{\mu}} \hat{V}_{\mu} \gamma^{\mu} \gamma^{5} N_{\mu} + g_{\mu\tau} \overline{N_{\tau}} \hat{V}_{\mu} \gamma^{\mu} \gamma^{5} N_{\tau}, \\ \mathcal{L}_{S} &= \left| \left(i \hat{c}_{\mu} - \frac{g}{2} \tau^{a} \cdot \hat{\mathbf{W}}_{\mu}^{a} - \frac{g'}{2} \hat{B}_{\mu} \right) \eta \right|^{2} + \left| \left(i \hat{c}_{\mu} - \frac{g'}{3} \hat{B}_{\mu} + g_{\mu\tau} \hat{V}_{\mu} \right) S_{1} \right|^{2} \\ &+ \left| \left(i \partial_{\mu} - 2g_{\mu\tau} \hat{V}_{\mu} \right) \phi_{2} \right|^{2} - V(H, \eta, \phi_{2}, S_{1}). \end{split}$$

Flavour anomalies, Light Dark Matter and rare *B* decays with missing energy in $L_{\mu} - L_{\tau}$ model

School of Physics, University of Hyderabad, Hyderabad - 500 046, India E-mail: rmsp@uohyd.ac.in

Rukmani Mohanta

MODEL FRAMEWORK AND CONSTRAINTS ON MODEL PARAMETERS

• Mixing in Gauge sector : The mixing of W^3_{μ} and the $U(1)_Y \& U(1)_{L_{\mu}-L_{\tau}}$ gauge bosons gives (Z, Z', γ) . • Scalar and Fermion sectors: The mixing of CP even components of H and ϕ_2 gives the SM Higgs H_1 and a heavy Higgs H_2 . Mixing of N_{μ} and N_{τ} gives two mass eigenstates, the lightest one N_{-} considered as probable DM candidate.

• The relic density of the light DM (N_{-}) is computed via freeze-out mechanism through the following decay channels:

 $N_{-}\overline{N}_{-} \to \mu\overline{\mu}, \ \tau\overline{\tau}, \ \nu_{\mu}\overline{\nu}_{\mu}, \ \nu_{\tau}\overline{\nu}_{\tau} \ (s \text{ channel } Z' \text{ and } \eta \text{ portal}), \text{ and } N_{-}\overline{N}_{-} \to d\overline{d}, \ s\overline{s} \ (t \text{ channel } SLQ \ (S_{1}) \text{ portal})$

• Constraints from Flavor sector: The $b \rightarrow sll$ transition occurs at 1-loop with SLQ and heavy fermions and the parameters

• The allowed range of all the four new parameters consistent with flavor phenomenology

Parameters	y_{qR}	$g_{\mu au}$	M_{-} (GeV)	$M_{Z'}$ (GeV)
Allowed range	0 - 2.0	0 - 0.01	0 - 2.5	1 - 6

Table 2: The allowed regions of y_{qR} , $g_{\mu\tau}$, M_{-} and $M_{Z'}$ parameters.

FOOTPRINTS ON $b \rightarrow s + E$ decay modes

• In SM, $b \rightarrow s +$ missing energy can be described by the $b \rightarrow s\nu\bar{\nu}$

• The effective Hamiltonian in SM : $\mathcal{H}_{eff} = \frac{-4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left(C_L^{\nu} \mathcal{O}_L^{\nu} + C_R^{\nu} \mathcal{O}_R^{\nu} \right) + h.c.,$ • In this model, the additional process involved is : $b \rightarrow s + \text{missing energy} = b \rightarrow s\nu\nu + b \rightarrow sN_-N_-$

• Thus, e.g., the amplitude of $B \rightarrow KN_-N_-$ process from the Z'exchanging diagram is

$$\mathcal{M} = C^{\mathrm{NP}}(q^2)[\bar{u}(p_B)\gamma^{\mu}(1+\gamma_5)u(p_K))][\bar{v}(p_2)\gamma_{\mu}u(p_1))]$$

where

$$C^{
m NP}(q^2) = rac{1}{2^5 \pi^2} rac{y_{qR}^2 g_{\mu au}^2 \cos 2eta \cos lpha \sec \chi}{q^2 - M_{Z'}^2} \mathcal{V}_{sb}(\chi_-,\chi_+)\,,$$

• We use two sets of benchmark values of new parameters, allowed by both the DM and flavor phenomenology

Benchmark	y qR	${oldsymbol g}_{\mu au}$	M_{-} (GeV)	<i>M_{Z'}</i> (GeV)
Benchmark-I	2.0	0.002	1.7	4
Benchmark-II	2.0	0.008	1.8	4.8

Table: Benchmark values of y_{aR} , M_{-} , $g_{\mu\tau}$ and $M_{Z'}$ parameters used in our analysis.

$Br(b o s ot\!$	SM value	Benchmark-I	Benchmark-II	Experimental Limit
$Br(B^0 o K^0 \not\!$	$(0.45 \pm 0.03) imes 10^{-5}$	0.645×10^{-5}	0.457×10^{-5}	$< 2.6 \times 10^{-5}$
$Br(B^+ \to K^+ \not\!$	$(0.49 \pm 0.03) imes 10^{-5}$	$0.697 imes 10^{-5}$	0.516×10^{-5}	$< 1.6 \times 10^{-5}$
$Br(B^0 o K^{*0} \not\!$	$(0.95\pm0.07) imes10^{-5}$	$1.271 imes 10^{-5}$	$0.981 imes 10^{-5}$	$< 1.8 imes 10^{-5}$
$Br(B^+ \to K^{*+} \not\!$	$(1.03 \pm 0.06) imes 10^{-5}$	1.381×10^{-5}	1.066×10^{-5}	$< 4.0 \times 10^{-5}$
$Br(B_s \to \phi \not\!\!\! E)$	$(1.2 \pm 0.07) imes 10^{-5}$	1.618×10^{-5}	1.24×10^{-5}	$< 5.4 imes 10^{-3}$

CONCLUSION

• We explored GeV scale dark matter and flavour anomalies in a $U(1)_{L_{\mu}-L_{\tau}}$ gauge extension of SM with an additional ($\bar{\mathbf{3}}, \mathbf{1}, 1/3$) SLQ.

• Shown the impact on rare *B* decays with *E*, observation of which would provide strong hints for the existence of light fermionic DM.

* Reference: S. Singirala, S. Sahoo and R. Mohanta, Phys. Rev. D 105, 015033 (2022)

Table: The predicted branching ratios of $b \rightarrow s \not\in$ processes for two different benchmark values of new parameters