

Impact of Lorentz Invariance Violation at DUNE

Based on: arXiv: 2302.10456 (accepted for publication in EPJC)

Arnab Sarker^a, Abinash Medhi^b, **Moon Moon Devi**^c

partment of Physics. Tezpur University. India. Email: devimm@tezu.ernet.in

Department of Physics, Tezpur University, India, Email: devimm@tezu.ernet.in,

31st International Symposium on Lepton Photon Interactions at High Energies 2023, Melbourne, Australia, Contribution code: P67

Abstract

Neutrinos are fundamental particles that can act as a probe for exploring violations of fundamental symmetries such as Lorentz Invariance. Lorentz symmetry breaking is a fundamental violation of space-time symmetry which implies that physical laws vary under Lorentz transformation.

In this work, we explore the impact of LIV parameters on the neutrino oscillation probabilities, particularly the oscillation channel $P_{\mu e}$ which is the most significant channel for DUNE.

1. Introduction

- Oscillation of $\nu's$ provides strong evidence for non-zero ν -mass.
- Lorentz Invariance is a space-time symmetry.

 All physical laws are invariant under Lorentz transformations.
- ν -Oscillation (BSM physics) \rightarrow A possible way to probe LIV. The LIV Effect considered is inherent in nature, and its effects will be noticeable even in a vacuum.
- LIV effect treated as a perturbation to the standard Hamiltonian. Most Prominent Contribution to $P_{\alpha\beta}$.
 - $-P_{\mu e}$ oscillation channel is affected mostly by the LIV parameters $a_{ee},~a_{e\mu}$ and $a_{e\tau}$.
 - Contribution to $P_{\mu\mu}$ oscillation channel is maximum for the LIV parameters $a_{\mu\mu}$, $a_{\tau\tau}$ and $a_{\mu\tau}$.
- CPT Violation is closely related to LIV. LBL experiments may be able to probe such effects through ν -oscillations.

2. Formalism

- Effect of LIV can be treated as a perturbation to the standard description of neutrino oscillations.
- Hamiltonian for $\nu's$, taking into the LIV effect,

$$H = H_{vac} + H_{mat} + H_{LIV}$$

where $H_{vac} \to \text{Vacuum Hamiltonian}$, $H_{mat} \to \text{Matter potential}$.

- LIV effect as a perturbation to standard Hamiltonian →
 We use the Standard Model Extension(SME) framework to
 analyse LIV.
- ullet $H_{LIV} o$ LIV Hamiltonian in the form

$$H_{LIV} = \left(egin{array}{cccc} a_{ee} & a_{e\mu} & a_{e au} \ a_{e\mu}^* & a_{\mu\mu} & a_{\mu au} \ a_{e au}^* & a_{\mu au}^* & a_{ au au}^* \end{array}
ight) - rac{4}{3} E \left(egin{array}{cccc} c_{ee} & c_{e\mu} & c_{e au} \ c_{e\mu}^* & c_{\mu\mu} & c_{\mu au} \ c_{e au}^* & c_{\mu au}^* & c_{ au au}^* \end{array}
ight)$$

where $a_{\alpha\beta}$ are CPT-odd terms and $c_{\alpha\beta}$ are CPT-even terms.

• In the presence of LIV parameters, the modified Hamiltonian can be used to investigate the effect of LIV on ν -oscillations.

In this work, we have explored how LIV affects $\nu-$ propagation through the CPT-odd (LIV terms).

3. Impact of LIV on $P_{\mu e}$ and $P_{\mu \mu}$

Parameters	Values	Parameters	Values
θ_{12}	34.51°	L	1300 km
θ_{13}	8.44°	δ_{CP}	-90°
θ_{23}	47°	Hierarchy	Normal
$\triangle m_{12}^2$	$7.56 \times 10^{-5} eV^2$	Density	$2.8 \mathrm{g/cm}3$
$\triangle m_{13}^2$	$2.55 \times 10^{-3} eV^2$		

a) Variation of $P_{\mu e}$ in the presence of a_{ee} , $a_{e\mu}$ and $a_{e\tau}$

Figure 1: $P_{\mu e}$ Plots for a_{ee} (Left), $a_{e\mu}$ (Middle) and $a_{e\tau}$ (Right)

• $P_{\mu e}$ is more affected by $a_{e\mu}$ and $a_{e\tau}$ at energy beyond the peak energy and their effects appears to be opposite of one another.

b) Variation of $P_{\mu\mu}$ in the presence of $a_{\mu\mu}$, $a_{\mu\tau}$ and $a_{\tau\tau}$

Figure 2: $P_{\mu\mu}$ Plots for $a_{\mu\mu}$ (Left), $a_{\mu\tau}$ (Middle) and $a_{\tau\tau}$ (Right)

• $P_{\mu\mu}$ is affected only by $a_{\mu\tau}$, the effects due to $a_{\mu\mu}$ and $a_{\tau\tau}$ is quite nominal for $P_{\mu\mu}$.

4. Results: Sensitivity studies

iii) CPV sensitivities at DUNE

Figure 3: CPV sensitivities at DUNE for $a_{e\mu}(left)$, $a_{e\tau}(middle)$ and $a_{\mu\tau}(right)$.

- LIV phases may pose degeneracy in the measurement of δ_{CP} .
- For $a_{e\mu} \& a_{e\tau}$, sensitivity depends on the combinations of $\phi_{\alpha\beta}$.
- The sensitivity deteriorates in the presence of $a_{\mu\tau}$.

iv) CP-Precision Sensitivites at DUNE

Figure a: CP-Precision Sensitivites for $a_{e\mu}(left)$, $a_{e\tau}(middle)$ and $a_{\mu\tau}(right)$.

- For $a_{e\mu}$, $\phi_{e\mu}$ dependent enhancement/suppression can be seen.
- For $a_{e\tau}$ with $\phi_{e\tau} = 0$, the sensitivity lies in the bottom of the band.
- The presence of $\phi_{\mu\tau}$ enhances the CP-Precision sensitivities.

Concluding Remarks

• Effect of $a_{e\mu}$, $a_{e\tau}$ on $P_{\mu e}$; $a_{\mu\tau}$ on $P_{\mu\mu}$ is quite significant. LIV can also affect the CP-measurement sensitivities.

Acknowledgement: AS acknowledges the JRF fellowship received from CSIR-HRDG. We also acknowledge DST(SERB) grant CRG/2021/002961. MMD acknowledges the DST travel support (ITS/2023/002253) and the support from the conference organizer.

• Phys.Rev. In the properties of the propertie

Phys.Rev. D 58 (Oct, 1998) 116002
European Physical Journal C 80 (Aug, 2020) 716

Eur. Phys. J. C 81 (2021), no. 9 792
Phys. Rev. D 93 (May, 2016) 093016