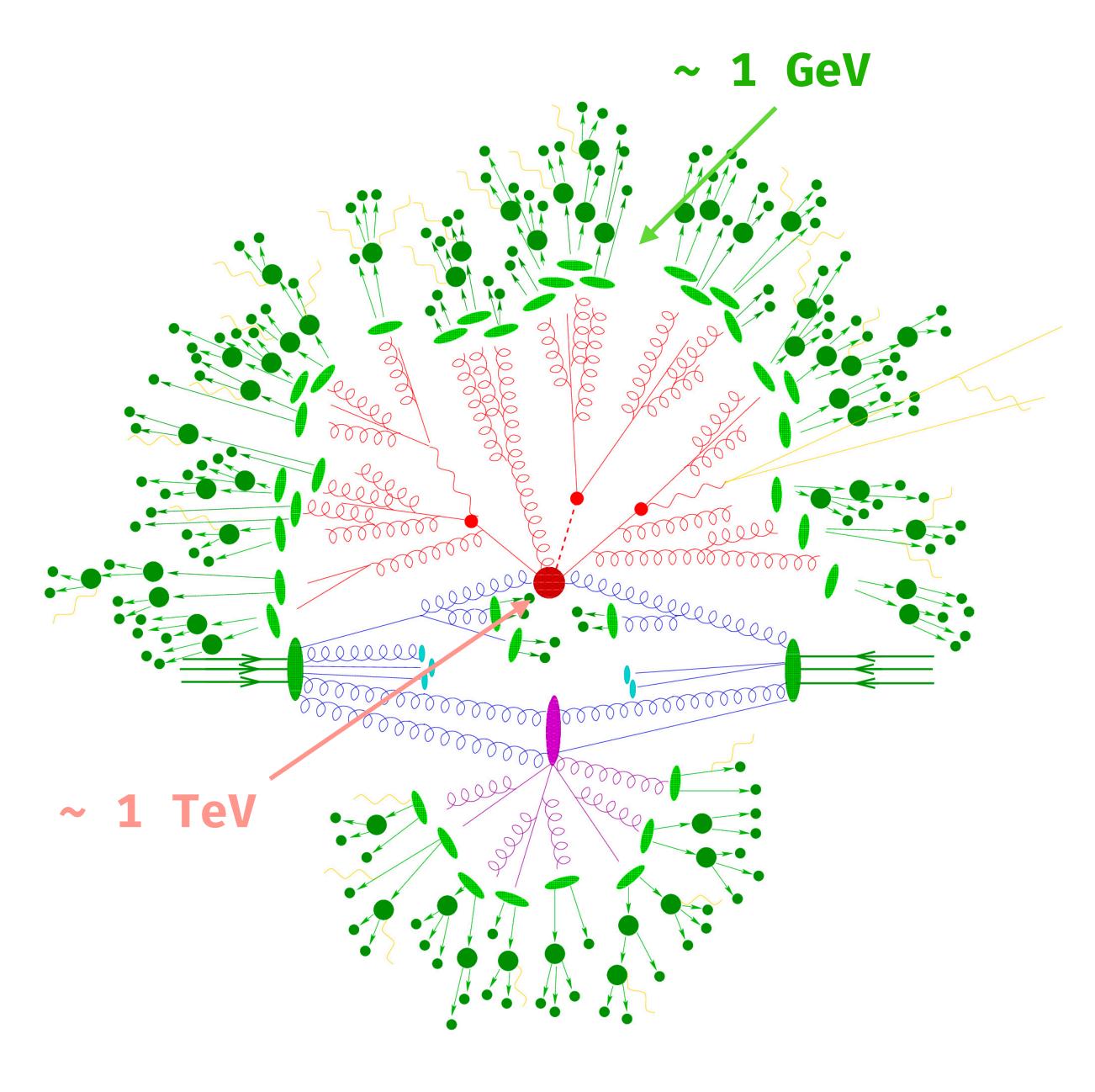
Future Challenges For Event Generators

Davide Napoletano, Lepton Photon '23, Melbourne



• MC community devoted to describe

• The strength of MC generators lies in factorisation of energy regimes!

• This makes it possible to separately improve each of the "components"!

Hard Scattering

•To do this at NLO need subtraction of IR divergences!

[Catani-Seymour, FKS,...]

•At NNLO many methods, none implemented in general purpose tools...

[Antenna, ColorFull, Slicing, Analitic...]

Hard Scattering

This has been the core focus of developments in MC over the last
years i.e. how to include higher fixed order correction!

·Still, fixed order description misses something...

Parton Shower

•Still need to run down to the GeV scale

Parton Shower

·Still need to run down to the GeV scale

A MODEL FOR PARTON SHOWERS IN QCD*

Geoffrey C. FOX and Stephen WOLFRAM¹
California Institute of Technology, Pasadena, California 91125, USA

Received 27 December 1979

A Monte Carlo model for the development of parton jets in QCD is described. Explicit low-order calculations are supplemented by leading logarithmic approximations for higher orders.

Parton Showers

- ·Various implementation with various degrees of technical details
- ·Accuracy of perturbative ingredients unchanged since the 90s

Parton Showers

- ·Various implementation with various degrees of technical details
- ·Accuracy of perturbative ingredients unchanged for 20 or so years

·Pythia/Ariadne, Vincia, Herwig, Dire, CSS...

•LO splittings and CMW scheme not enough, be careful of t or recoil (PanScales, Alaric, Deductor, Herwig, Amplitude Evolution)

·Pythia/Ariadne, Vincia, Herwig, Dire, CSS...

·Merging multiple multiplicities with Sudakov vetoes

[CKKW-L, FxFx]

 Matching higher order calculations with standard showers already non-trivial (NN(N)LO + PS) -> what about even higher order showers? ·Merging multiple multiplicities with Sudakov vetoes

[CKKW-L, FxFx]

•Matching higher order calculations with standard showers already non-trivial (NN(N)LO + PS) -> what about even higher order showers?

NP Corrections

•Take e^+e^- , look at a global observable

NP Corrections

•Take e^+e^- , look at a global observable

•The shower description is still not enough...

•We still need to parametrise what happens between 1GeV -> Λ_{QCD}

Tuning!

-We still need to parametrise what happens between 1GeV -> Λ_{OCD}

Tuning!

•Really universal? Perturbative/NP?

•So far only replacing this amounts to replacing splitting functions and Kinematics

·Clear interplay of scales...

- •Most GPMCG come equipped with some form of EW corrections, fixed order, or in the Sudakov approximation
- ·Still some work to do on fully fledged EW showers, EW final states?

More Colliders/Heavy Ions

•Pythia is <u>virtually</u> the only option! But all other MCs need to catch up, as competition drives excellence!

3.3	Onia	39
3.4	Top production	41
3.5	Higgs	41
3.6	Supersymmetry	42
3.7	Hidden valley	43
3.8	Dark matter	44
3.9	Other exotica	46
3.10	Couplings and scales for internal processes	46
3.11	Handling of resonances and their decays	48

2.

SciPost Physics Codebases		Submission
3.12 Parton distribution functions		52
3.13 Phase-space cuts for hard processes		54
3.14 Second hard process		56

Code Speed/Data sharing

- ·Running these tools at their highest accuracy is costly
- ·Codebases often contain inefficiencies (as we are physicists after all!)
- ·Results of running can occupy an extremely large amount of space

Code Speed/Data sharing

- •Running these tools at their highest accuracy is costly
- ·Codebases often contain inefficiencies (as we are physicists after all!)
- ·Results of running can occupy an extremely large amount of space

=> Unified HD5 format/GPU offloading of HP parts of calculation...

Code Speed/Data sharing

- ·Running these tools at their highest accuracy is costly
- ·Codebases often contain inefficiencies (as we are physicists after all!)
- ·Results of running can occupy an extremely large amount of space

=> Unified HD5 format/GPU offloading of HP parts of calculation...

•How far in the future is this?

Work Recognition & Man Power

- ·Increasingly harder to attract good physicist to do MC
- •Codebases are often so large that require years of experience to significantly contribute to
- ·And the recognition for working behind the scenes is virtually zero

Conclusions

•Successes!

- Incredible development on higher order corrections/pQCD aspects
- Calculation of BSM effects through UFO or coded models
- Recent development of Parton Showers -> higher accuracy

Conclusions

- ·Challenges for the future!
- Dedicated study of power-corrections (mass, etc)
- Dedicated study of NP effects, in how far are they universal
- Need to discuss work recognition: (more papers == better)
- Expand to other colliders
- Code speed, generation management/sharing...