Angular distribution of $\Lambda_b \rightarrow pK-I+I-$ decays comprising Λ resonances with spin $\leq 5/2$

Michal Kreps

Lepton-Photon 2023, Melbourne

Based on A. Beck, T. Blake and MK, JHEP 02 (2023) 189

Introduction

- \rightarrow Decays governed by $b \rightarrow s/l$ transitions are sensitive probes for new physics
- Well studied for meson decays
- Baryon decays provide complementary information
 - Different spin structure
 - Differences in hadronic structure
- \rightarrow Decays $\Lambda_b \rightarrow \Lambda^* \mu \mu$ with spin 1/2 and 3/2 Λ^* studied previously (<u>1903.10553</u>, <u>JHEP 07 (2020) 002</u>, JHEP 06 (2019) 136, Eur. Phys. J. Plus 136 (2021) <u>614</u>)
- In reality several interfering resonances Study effects on angular distributions and observables

in 0.1 < q^2 < 6.0 GeV²

candidate

Weighted

Interference

- written in the helicity formalism
- Full decay rate

Several terms will have same angular term, so want to group them

The full angular distribution with several interfering spin states can be easily

Angular basis

- No unique option how to group terms, pick one based on associated Legendre polynomials
 - Related to angular momentum and makes it easy to keep track of terms
- $\Rightarrow \text{Final basis:} \quad f(\vec{\Omega}; l_{\text{lep}}, l_{\text{had}}, m_{\text{lep}}, m_{\text{had}}) = 2n_{l_{\text{lep}}}^{m_{\text{lep}}} n_{l_{\text{had}}}^{m_{\text{had}}} P_{l_{\text{lep}}}^{|m_{\text{lep}}|} (\cos \theta_{\ell}) P_{l_{\text{had}}}^{|m_{\text{had}}|} (\cos \theta_{p})$

The angular distribution takes form $\frac{32\pi^2}{3} \frac{\mathrm{d}^7\Gamma}{\mathrm{d}q^2 \,\mathrm{d}m_{pK} \,\mathrm{d}\vec{\Omega}} = \sum_{i=1}^{1} K_i(q^2, m_{pK}) f_i(\vec{\Omega})$

Resulting functions are orthogonal (own weights for the method of moments) $\times \begin{cases} \sin(|m_{\text{lep}}|\phi_{\ell} + |m_{\text{had}}|\phi_p) & m_{\text{lep}} \leq 0 \text{ and } m_{\text{had}} \leq 0 \\ \cos(|m_{\text{lep}}|\phi_{\ell} + |m_{\text{had}}|\phi_p) & m_{\text{lep}} \geq 0 \text{ and } m_{\text{had}} \geq 0 \end{cases}$

 $K_i(q^2, m_{pK})$ are bilinear combinations of products of amplitudes

Anatomy of angular distribution

- There are 178 terms when polarisation is allowed to be nonzero
 - ✤ 46 of these present also with zero polarisation and have no θ_b dependence ($m_{lep}=m_{had}$)

 - For polarised case, 46 terms have $\cos \theta_b$ dependence while rest of the angles are same as unpolarised case
 - Remaining terms have sin θ_b dependence with basis functions where $m_{\text{lep}} \neq m_{\text{had}}$

i	parity combination	$J_{\Lambda} + J'_{\Lambda}$	$\sin 1/2$	gle sta $3/2$	5/2	${ m Re}/{ m Im}$	V/A	helicity combinations
1	same	≥ 1	\checkmark	\checkmark	\checkmark	Re	_	$J_{\Lambda} = J'_{\Lambda}, (\lambda_{\Lambda}, \lambda_{V}) = (\lambda_{\Lambda}, \lambda_{V})'$
2	same	≥ 1	\checkmark	\checkmark	\checkmark	Re	\checkmark	$J_{\Lambda} = J'_{\Lambda}, \lambda_{V} \neq 0, \ (\lambda_{\Lambda}, \lambda_{V}) = (\lambda_{\Lambda}, \lambda_{V})$
3	same	≥ 1	\checkmark	\checkmark	\checkmark	Re		$J_{\Lambda} = J'_{\Lambda}, (\lambda_{\Lambda}, \lambda_{V}) = (\lambda_{\Lambda}, \lambda_{V})'$
4	opposite	≥ 1				Re		$(\lambda_{\Lambda},\lambda_{V})=(\lambda_{\Lambda},\lambda_{V})'$
5	opposite	≥ 1				Re	\checkmark	$\lambda_V \neq 0, \ (\lambda_\Lambda, \lambda_V) = (\lambda_\Lambda, \lambda_V)'$
6	opposite	≥ 1				Re		$(\lambda_{\Lambda},\lambda_{V})=(\lambda_{\Lambda},\lambda_{V})'$
7	same	≥ 2		\checkmark	\checkmark	Re		$(\lambda_{\Lambda},\lambda_{V})=(\lambda_{\Lambda},\lambda_{V})'$
8	same	≥ 2		\checkmark	\checkmark	Re	\checkmark	$\lambda_V eq 0, \ (\lambda_\Lambda, \lambda_V) = (\lambda_\Lambda, \lambda_V)'$
9	same	≥ 2		\checkmark	\checkmark	Re		$(\lambda_{\Lambda},\lambda_{V})=(\lambda_{\Lambda},\lambda_{V})'$
10	opposite	≥ 3				Re		$(\lambda_{\Lambda},\lambda_{V})=(\lambda_{\Lambda},\lambda_{V})'$
11	opposite	≥ 3				Re	\checkmark	$\lambda_V eq 0, (\lambda_\Lambda, \lambda_V) = (\lambda_\Lambda, \lambda_V)'$
12	opposite	≥ 3				Re		$(\lambda_\Lambda,\lambda_V)=(\lambda_\Lambda,\lambda_V)'$
13	same	≥ 4			\checkmark	Re		$(\lambda_\Lambda,\lambda_V)=(\lambda_\Lambda,\lambda_V)'$
14	same	≥ 4			\checkmark	Re	\checkmark	$\lambda_V eq 0, \ (\lambda_\Lambda, \lambda_V) = (\lambda_\Lambda, \lambda_V)'$
15	same	≥ 4			\checkmark	Re		$(\lambda_\Lambda,\lambda_V)=(\lambda_\Lambda,\lambda_V)'$
16	opposite	≥ 5				Re		$(\lambda_\Lambda,\lambda_V)=(\lambda_\Lambda,\lambda_V)'$
17	opposite	≥ 5				Re	\checkmark	$\lambda_V eq 0, (\lambda_\Lambda, \lambda_V) = (\lambda_\Lambda, \lambda_V)'$
18	opposite	≥ 5				Re		$(\lambda_{\Lambda},\lambda_{V})=(\lambda_{\Lambda},\lambda_{V})'$
19	opposite	≥ 1				Re		
20	opposite	≥ 1				Re	\checkmark	
21	same	≥ 2		\checkmark	\checkmark	Re		
22	same	≥ 2		\checkmark	\checkmark	Re	\checkmark	
23	opposite	≥ 3				Re		$\lambda = 0 + \lambda (1 + 1 + (1) + \lambda (1))$
24	opposite	≥ 3				Re	\checkmark	$\lambda_V = 0, \lambda'_V = 1$ (all possible λ'_{Λ})
25	same	≥ 4			\checkmark	Re		
26	same	≥ 4			\checkmark	Re	\checkmark	
27	opposite	≥ 5				Re		
28	opposite	≥ 5				Re	\checkmark	

Anatomy of angular distribution

- → 1D distribution in θ_1 has usual form, K_2 generates lepton A_{FB}
 - Usual contributions, just adds //* helicity 3/2 in addition to 1/2
- → 1D distribution in θ_{ρ} gets larger number of terms
 - Includes odd terms in cos θ_p which vanish for single resonance
 - With interference, A_{FB} generated also on hadron side with K_4 , K_{10} and K_{16} contributing

$$\frac{\mathrm{d}^3\Gamma}{\mathrm{d}q^2\,\mathrm{d}m_{pK}\,\mathrm{d}\cos\theta_\ell} = \frac{\sqrt{3}}{2}K_1 + \frac{3}{2}K_2\cos\theta_\ell + \frac{\sqrt{15}}{4}K_3(3\cos^2\theta_\ell)$$

$$\frac{\mathrm{d}^{3}\Gamma}{\mathrm{d}q^{2}\,\mathrm{d}m_{pK}\,\mathrm{d}\cos\theta_{p}} = \frac{\sqrt{3}}{2}K_{1} - \frac{\sqrt{15}}{4}K_{7} + 9\frac{\sqrt{3}}{16}K_{13} \\ + \left(\frac{3}{2}K_{4} - 3\frac{\sqrt{21}}{4}K_{10} + 15\frac{\sqrt{33}}{16}K_{16}\right)\mathrm{c}^{4} \\ + \left(3\frac{\sqrt{15}}{4}K_{7} - 45\frac{\sqrt{3}}{8}K_{13}\right)\mathrm{cos}^{2}\theta_{p} \\ + \left(5\frac{\sqrt{21}}{4}K_{10} - 35\frac{\sqrt{33}}{8}K_{16}\right)\mathrm{cos}^{3}\theta_{p} \\ + \frac{105\sqrt{3}}{16}K_{13}\mathrm{cos}^{4}\theta_{p} + \frac{63\sqrt{33}}{16}K_{16}\mathrm{cos}^{5}\mathrm{cs}^{4}\mathrm{cs$$

Numerical studies

- ➡ Use SM Wilson coefficients used in <u>JHEP 05 (2013) 137</u>
- Most of the resonances modelled by relativistic Breit-Wigner
- \rightarrow Λ (1405) uses Flattè model
- Investigated scenarios:
 - \rightarrow Flip C₉/C₁₀ or add right C₉'/C₁₀'
 - Global fit in Eur. Phys. J. C 82 (2022) 326

M/CK/FRSITY OF WARWICK

Use all well established states for which prediction for form-factors exists Form-factors based on quark-model from Int. J. Mod. Phys. A 30 (2015) 1550172

resonance	$\mid m_{\Lambda} \; [{ m GeV} / c^2 \;]$	$\Gamma_{\Lambda} \; [{ m GeV} / c^2 \;]$	$2J_{\Lambda}$	P_{Λ}	$\mathcal{B}(\Lambda \to N)$
$\Lambda(1405)$	1.405	0.051	1	—	0.50
$\Lambda(1520)$	1.519	0.016	3		0.45
$\Lambda(1600)$	1.600	0.200	1	+	0.15 - 0.
$\Lambda(1670)$	1.674	0.030	1	_	0.20 - 0.
$\Lambda(1690)$	1.690	0.070	3		0.20 - 0.
$\Lambda(1800)$	1.800	0.200	1		0.25 - 0.
$\Lambda(1810)$	1.790	0.110	1	+	0.05 - 0.
$\Lambda(1820)$	1.820	0.080	5	+	0.55 - 0.
$\Lambda(1890)$	1.890	0.120	3	+	0.24 - 0.
$\Lambda(2110)$	2.090	0.250	5	+	0.05 - 0.

Isolated spin 5/2 resonance

- \rightarrow Only isolated $\Lambda(1820)$
- Grey band shows uncertainty from:
 - Form-factor
 - Widths etc.
 - Non-factorisable corrections
- Often need rather large change in Wilson coefficients for effects larger than uncertainties

WARWICK THE UNIVERSITY OF WARWICK

5.0

2.5

7.5

 $J/\psi(1S)$

5.0 7.5 10.0

 $\psi(2S)$

12.5

 $q^2 \; [\mathrm{GeV}^2/c^4]$

-0.075

2.5

Ensemble of resonances

- \rightarrow Strong phases of all Λ resonances set to 0 ($\pi/2$ at the pole)

\rightarrow Investigate sensitivity of observables with ensemble of different Λ resonances \rightarrow Additional uncertainty from strong phases by varying them between $-\pi$ and π

Ensemble of resonances

- Some cases give good sensitivity to new physics without effects from strong phases
- \blacktriangleright Some observables like K_4 has little sensitivity to new physics, but large effect from strong phases

 \rightarrow Several observables like K_{32} sensitive to new physics but require knowledge of strong phases

Ensemble of resonances

- Particular example of effect of $\overline{K}_4(q^2)$ strong phases 0.2
- Set strong phase of spin-3/2 resonances to π while keeping rest to 0
- \rightarrow Very large effects on K_4 and K_{32}
 - K_{32} shows significantly different behaviour
- $\overline{K}_4(q^2)$

0.0

-0.2

-0.4

0.0

0.2

- -0.2
- -0.4

Summary

- \rightarrow For the first time looked into angular distribution of $\Lambda_b \rightarrow p K \mu \mu$ with interfering pK resonances up to spin 5/2
- Rich set of observables, 46 (178) in unpolarised (polarised) case Some only due to interference between resonances with different spin-parity Some exhibit sensitivity to Wilson coefficients independent of strong phases For some observables, sensitivity to Wilson coefficients is present, but strong

 - phases need to be known
- Provided distribution in the angular basis suitable for the method of moments useful for future measurements

Backup

Definition of angles

Helicity amplitudes

$$\mathcal{H}^{\Lambda,7^{(\prime)}}_{\lambda_{\Lambda},\lambda_{V}}(q^{2},m_{pK}) = -\frac{2m_{b}}{q^{2}}\frac{\mathcal{C}^{\text{eff}}_{7^{(\prime)}}}{2} e^{i\delta_{\Lambda}} \left(H^{\Lambda,T}_{\lambda_{\Lambda},\lambda_{V}} \mp H^{\Lambda,T5}_{\lambda_{\Lambda},\lambda_{V}}\right)$$
$$\mathcal{H}^{\Lambda,9^{(\prime)}}_{\lambda_{\Lambda},\lambda_{V}}(q^{2},m_{pK}) = \frac{\mathcal{C}^{\text{eff}}_{9^{(\prime)}}}{2} e^{i\delta_{\Lambda}} \left(H^{\Lambda,V}_{\lambda_{\Lambda},\lambda_{V}} \mp H^{\Lambda,A}_{\lambda_{\Lambda},\lambda_{V}}\right)$$
$$\mathcal{H}^{\Lambda,10^{(\prime)}}_{\lambda_{\Lambda},\lambda_{V}}(q^{2},m_{pK}) = \frac{\mathcal{C}^{\text{eff}}_{10^{(\prime)}}}{2} e^{i\delta_{\Lambda}} \left(H^{\Lambda,V}_{\lambda_{\Lambda},\lambda_{V}} \mp H^{\Lambda,A}_{\lambda_{\Lambda},\lambda_{V}}\right)$$

$$H^{\Lambda,\Gamma^{\mu}}_{\lambda_{\Lambda},\lambda_{V}} = \varepsilon^{*}_{\mu}(\lambda_{V}) \langle \Lambda | \bar{s} \Gamma \rangle$$

 $\langle \Lambda | \bar{s} \Gamma^{\mu} b | \Lambda_b^0 \rangle = \bar{u}(k, \lambda_\Lambda) \left[X_{\Gamma 1}(q^2) \gamma^{\mu} + X_{\Gamma 2}(q^2) \gamma^{\mu} + X_$ $\langle \Lambda | \bar{s} \Gamma^{\mu} b | \Lambda_b^0 \rangle = \bar{u}_{\alpha}(k, \lambda_{\Lambda}) \left[v_p^{\alpha} \left(X_{\Gamma 1}(q^2) \gamma^{\mu} + X_{\Gamma 2}(q^2) v_p^{\mu} + X_{\Gamma$ $\langle \Lambda | \bar{s} \Gamma^{\mu} b | \Lambda_b^0 \rangle = \bar{u}_{\alpha\beta}(k, \lambda_\Lambda) v_p^{\alpha} \left[v_p^{\beta} \left(X_{\Gamma 1}(q^2) \gamma^{\mu} \right) \right]$

 $\Gamma^{\mu}b|\Lambda^0_b\rangle$

$$\begin{aligned} & \left[x_{1}^{2} v_{p}^{\mu} + X_{\Gamma 3}(q^{2}) v_{k}^{\mu} \right] u(p,\lambda_{b}) & \text{Spin 1/2} \\ & + X_{\Gamma 3}(q^{2}) v_{k}^{\mu} \right] + X_{\Gamma 4}(q^{2}) g^{\alpha \mu} u(p,\lambda_{b}) & \text{Spin 3/2} \\ & + X_{\Gamma 2}(q^{2}) v_{p}^{\mu} + X_{\Gamma 3}(q^{2}) v_{k}^{\mu} \\ & + X_{\Gamma 4}(q^{2}) g^{\beta \mu} \right] u(p,\lambda_{b}) . & \text{Spin 5/2} \end{aligned}$$

Amplitude combinations

i	parity combination	$J_{\Lambda} + J'_{\Lambda}$	$\sin 1/2$	gle sta $3/2$	5/2	Re/Im	V/A	helicity combinations	Eq.
1	same	≥ 1	\checkmark	\checkmark	\checkmark	Re		$J_{\Lambda} = J'_{\Lambda}, (\lambda_{\Lambda}, \lambda_{V}) = (\lambda_{\Lambda}, \lambda_{V})'$	(62)
2	same	≥ 1	\checkmark	\checkmark	\checkmark	Re	\checkmark	$J_{\Lambda} = J'_{\Lambda}, \lambda_V \neq 0, \ (\lambda_{\Lambda}, \lambda_V) = (\lambda_{\Lambda}, \lambda_V)'$	(63)
3	same	≥ 1	\checkmark	\checkmark	\checkmark	Re		$J_{\Lambda} = J'_{\Lambda}, (\lambda_{\Lambda}, \lambda_{V}) = (\lambda_{\Lambda}, \lambda_{V})'$	(64)
4	opposite	≥ 1				Re		$(\lambda_{\Lambda},\lambda_{V})=(\lambda_{\Lambda},\lambda_{V})'$	(66)
5	opposite	≥ 1				Re	\checkmark	$\lambda_V \neq 0, \ (\lambda_\Lambda, \lambda_V) = (\lambda_\Lambda, \lambda_V)'$	(117)
6	opposite	≥ 1				Re		$(\lambda_\Lambda,\lambda_V)=(\lambda_\Lambda,\lambda_V)'$	(118)
7	same	≥ 2		\checkmark	\checkmark	Re		$(\lambda_{\Lambda},\lambda_{V})=(\lambda_{\Lambda},\lambda_{V})'$	(119)
8	same	≥ 2		\checkmark	\checkmark	Re	\checkmark	$\lambda_V \neq 0, \ (\lambda_\Lambda, \lambda_V) = (\lambda_\Lambda, \lambda_V)'$	(120)
9	same	≥ 2		\checkmark	\checkmark	Re		$(\lambda_{\Lambda},\lambda_{V})=(\lambda_{\Lambda},\lambda_{V})'$	(121)
10	opposite	≥ 3				Re		$(\lambda_{\Lambda},\lambda_{V})=(\lambda_{\Lambda},\lambda_{V})'$	(122)
11	opposite	≥ 3				Re	\checkmark	$\lambda_V \neq 0, \ (\lambda_\Lambda, \lambda_V) = (\lambda_\Lambda, \lambda_V)'$	(123)
12	opposite	≥ 3				Re		$(\lambda_{\Lambda},\lambda_{V})=(\lambda_{\Lambda},\lambda_{V})'$	(124)
13	same	≥ 4			\checkmark	Re		$(\lambda_\Lambda,\lambda_V)=(\lambda_\Lambda,\lambda_V)'$	(125)
14	same	≥ 4			\checkmark	Re	\checkmark	$\lambda_V \neq 0, \ (\lambda_\Lambda, \lambda_V) = (\lambda_\Lambda, \lambda_V)'$	(126)
15	same	≥ 4			\checkmark	Re		$(\lambda_{\Lambda},\lambda_{V})=(\lambda_{\Lambda},\lambda_{V})'$	(127)
16	opposite	≥ 5				Re		$(\lambda_{\Lambda},\lambda_{V})=(\lambda_{\Lambda},\lambda_{V})'$	(128)
17	opposite	≥ 5				Re	\checkmark	$\lambda_V \neq 0, \ (\lambda_\Lambda, \lambda_V) = (\lambda_\Lambda, \lambda_V)'$	(129)
18	opposite	≥ 5				Re		$(\lambda_{\Lambda},\lambda_{V})=(\lambda_{\Lambda},\lambda_{V})'$	(130)

Amplitude combinations

19	opposite	≥ 1			Re			(131)
20	opposite	≥ 1			Re	\checkmark		(132)
21	same	≥ 2	\checkmark	\checkmark	Re			(133)
22	same	≥ 2	\checkmark	\checkmark	Re	\checkmark		(134)
23	opposite	≥ 3			Re		$(1) \qquad (1) $	(135)
24	opposite	≥ 3			Re	\checkmark	$\lambda_V = 0, \lambda_V = 1$ (all possible λ_{Λ})	(136
25	same	≥ 4		\checkmark	Re			(137)
26	same	≥ 4		\checkmark	Re	\checkmark		(138
27	opposite	≥ 5			Re			(139
28	opposite	≥ 5			Re	\checkmark		(140

WARWICH
THE UNIVERSITY OF WARWIG

Amplitude combinations

.

29	opposite	≥ 1			Im			(141)
30	opposite	≥ 1			Im	\checkmark		(142)
31	same	≥ 2	\checkmark	\checkmark	Im			(143)
32	same	≥ 2	\checkmark	\checkmark	Im	\checkmark		(67)
33	opposite	≥ 3			Im		(1) (1) (1) (2)	(144)
34	opposite	≥ 3			Im	\checkmark	$\lambda_V = 0, \lambda_V = 1 \text{ (all possible } \lambda_{\Lambda})$	(145)
35	same	≥ 4		\checkmark	Im			(146)
36	same	≥ 4		\checkmark	Im	\checkmark		(147)
37	opposite	≥ 5			Im			(148)
38	opposite	≥ 5			Im	\checkmark		(149)
39	same	≥ 2	\checkmark	\checkmark	Re			(150)
40	opposite	≥ 3			Re			(151)
41	same	≥ 4		\checkmark	Re			(152)
42	opposite	≥ 5			Re		$ \chi(\prime) = 1 \qquad 1/9 \qquad -2/9$	(153)
43	same	≥ 2	\checkmark	\checkmark	Im		$ \lambda_V^{(\prime)} = 1, \ \lambda_\Lambda = \pm 1/2, \lambda_\Lambda^{\prime} = \mp 3/2$	(154)
44	opposite	≥ 3			Im			(155)
45	same	≥ 4		\checkmark	Im			(156)
46	opposite	≥ 5			Im			(157)

.

Explicit expressions for observables

$$\mathcal{A}^{Q,V}_{\lambda_{\Lambda},\lambda_{V}} = N \sum_{\Lambda} \sum_{i=7^{(\prime)},9^{(\prime)}} \mathcal{H}^{\Lambda,\mathcal{O}_{i}}_{\lambda_{\Lambda},\lambda_{V}} h^{\Lambda}_{\lambda_{\Lambda},1/2} ,$$
$$\mathcal{A}^{Q,A}_{\lambda_{\Lambda},\lambda_{V}} = N \sum_{\Lambda} \sum_{i=10^{(\prime)}} \mathcal{H}^{\Lambda,\mathcal{O}_{i}}_{\lambda_{\Lambda},\lambda_{V}} h^{\Lambda}_{\lambda_{\Lambda},1/2} ,$$

$$K_1 = \frac{1}{\sqrt{3}} \sum_{Q} \sum_{\lambda_\Lambda, \lambda_V} \left(\left| \mathcal{A}_{\lambda_\Lambda, \lambda_V}^{Q, V} \right|^2 + V \longleftrightarrow A \right)$$

$$K_{2} = -\sum_{Q} \sum_{\lambda=\pm 1} \lambda \cdot \operatorname{Re} \left[\mathcal{A}_{\frac{3}{2}\lambda,\lambda}^{Q,A*} \mathcal{A}_{\frac{3}{2}\lambda,\lambda}^{Q,V} + \mathcal{A}_{\frac{1}{2}\lambda,\lambda}^{Q,A*} \mathcal{A}_{\frac{1}{2}\lambda,\lambda}^{Q,V} \right]$$

$$K_3 = \frac{1}{2\sqrt{15}} \sum_{Q} \sum_{\lambda=\pm 1} \left(\left| \mathcal{A}_{\frac{3}{2}\lambda,\lambda}^{Q,V} \right|^2 + \left| \mathcal{A}_{\frac{1}{2}\lambda,\lambda}^{Q,V} \right|^2 - 2 \left| \mathcal{A}_{\frac{1}{2}\lambda,0}^{Q,V} \right|^2 \right) + V \longleftrightarrow A$$

Wilson coefficients

- ➡ SM Wilson coefficients used in <u>JHEP 05</u> (2013) 137
- Global fit from <u>Eur. Phys. J. C 82 (2022) 326</u>
 - \diamond Consistent with existing measurements in $b \rightarrow s/l$

	WAR' THE UNIVERSIT	Y OF WARWIC
	Standard Model	global
\mathcal{C}_1	-0.2632	
\mathcal{C}_2	1.0111	
\mathcal{C}_3	-0.0055	
\mathcal{C}_4	-0.0806	
\mathcal{C}_5	0.0004	
\mathcal{C}_6	0.0009	
\mathcal{C}_7	-0.3120	-0.312
\mathcal{C}_9	4.0749	2.994
\mathcal{C}_{10}	-4.3085	-4.158
$\mathcal{C}_{7'}$	0.0000	0.00
$\mathcal{C}_{9'}$	0.0000	0.160
$\mathcal{C}_{10'}$	0.0000	-0.180

