Angular distribution of
 $\Lambda_{b} \rightarrow p K-I+I$ - decays
 comprising Λ resonances with spin $\leq 5 / 2$

Michal Kreps

Lepton-Photon 2023, Melbourne

Introduction

\Rightarrow Decays governed by $b \rightarrow s / /$ transitions are sensitive probes for new physics

- Well studied for meson decays
- Baryon decays provide complementary information
* Different spin structure
* Differences in hadronic structure
\Rightarrow Decays $\Lambda_{b} \rightarrow \Lambda^{*} \mu \mu$ with spin $1 / 2$ and $3 / 2 \Lambda^{*}$ studied previously (1903.10553, JHEP 07 (2020) 002, JHEP 06 (2019) 136, Eur. Phys. J. Plus 136 (2021) 614)
- In reality several interfering resonances
* Study effects on angular distributions and observables

LHCb-PAPER-2019-040
Background subtracted $\Lambda_{b} \rightarrow p K \mu \mu$ in $0.1<q^{2}<6.0 \mathrm{GeV}^{2}$

Interference

\Rightarrow The full angular distribution with several interfering spin states can be easily written in the helicity formalism
\Rightarrow Full decay rate

$$
\left.\frac{\mathrm{d}^{7} \Gamma}{\mathrm{~d} q^{2} \mathrm{~d} m_{p K} \mathrm{~d} \vec{\Omega}}=\frac{1}{m_{\Lambda_{b}}^{2}} \frac{N_{1}^{2}}{2^{6}(2 \pi)^{7}} \frac{|\vec{k}|\left|\vec{k}_{1}\right|\left|\vec{q}^{2}\right|}{\sqrt{q^{2}}} \sum_{\lambda_{b}} \mathcal{P}_{\lambda_{b}} \sum_{\lambda_{1}, \lambda_{2}, \lambda_{p}} \right\rvert\, \sum_{\mathcal{O}_{i}} \sum_{\Lambda} \sqrt{J_{\Lambda}+\frac{1}{2}} \sum_{\lambda_{\Lambda}} g_{\lambda_{V} \lambda_{V}}
$$

Λ_{b} decay amplitudes
dimuon system amplitudes
Λ^{*} decay amplitudes
$\times \mathcal{H}_{\lambda_{\Lambda}, \lambda_{V}}^{\Lambda, \mathcal{O}_{i}}\left(q^{2}, m_{p K}\right) d_{\lambda_{b}, \lambda_{\Lambda}-\lambda_{V}}^{1 / 2}\left(\theta_{b}\right)$
$\times \tilde{h}_{\lambda_{1}, \lambda_{2}}^{\mathcal{O}_{i}, \eta^{2}}\left(q^{2}\right) D_{\lambda_{V}, \lambda_{1}-\lambda_{2}}^{J_{V}}\left(\phi_{\ell}, \theta_{\ell},-\phi_{\ell}\right)^{*}$
$h_{\lambda_{\Lambda}, \lambda_{p}}^{\Lambda}\left(m_{p K}\right) D_{\lambda_{\Lambda}, \lambda_{p}}^{J_{\Lambda}}\left(\phi_{p}, \theta_{p},-\phi_{p}\right)^{2}$
\Rightarrow Several terms will have same angular term, so want to group them

Angular basis

\Rightarrow No unique option how to group terms, pick one based on associated Legendre polynomials

* Related to angular momentum and makes it easy to keep track of terms
* Resulting functions are orthogonal (own weights for the method of moments)
\Rightarrow Final basis: $f\left(\Omega ; ; l_{\text {lep }}, l_{\text {had }}, m_{\text {lep }}, m_{\text {had }}\right)=2 n_{l_{\text {lep }}}^{m_{\text {lep }}} n_{l_{\text {had }}}^{m_{\text {had }}} P_{l_{\text {lep }}}^{\left|m_{\text {leep }}\right|}\left(\cos \theta_{\ell}\right) P_{l_{\text {had }}}^{m_{\text {had }} \mid}\left(\cos \theta_{p}\right)$

$$
\times \begin{cases}\sin \left(\left|m_{\text {lep }}\right| \phi_{\ell}+\left|m_{\mathrm{had}}\right| \phi_{p}\right) & m_{\mathrm{lep}} \leq 0 \text { and } m_{\mathrm{had}} \leq 0 \\ \cos \left(\left|m_{\mathrm{lep}}\right| \phi_{\ell}+\left|m_{\mathrm{had}}\right| \phi_{p}\right) & m_{\mathrm{lep}} \geq 0 \text { and } m_{\mathrm{had}} \geq 0\end{cases}
$$

\Rightarrow The angular distribution takes form

$$
\frac{32 \pi^{2}}{3} \frac{\mathrm{~d}^{7} \Gamma}{\mathrm{~d} q^{2} \mathrm{~d} m_{p K} \mathrm{~d} \vec{\Omega}}=\sum_{i=1}^{178} K_{i}\left(q^{2}, m_{p K}\right) f_{i}(\vec{\Omega})
$$

$K_{i}\left(q^{2}, m_{p K}\right)$ are bilinear combinations of products of amplitudes

Anatomy of angular distribution

- There are 178 terms when polarisation is allowed to be nonzero
* 46 of these present also with zero polarisation and have no θ_{b} dependence ($m_{\text {lep }}=m_{\text {had }}$)
* For polarised case, 46 terms have $\cos \theta_{b}$ dependence while rest of the angles are same as unpolarised case
* Remaining terms have $\sin \theta_{b}$ dependence with basis functions where $m_{\text {lep }} \neq m_{\text {had }}$

i	parity combination	$J_{\Lambda}+J_{\Lambda}^{\prime}$	single states			Re/Im	V/A	helicity combinations	Eq.
			$1 / 2$	$3 / 2$	5/2				
1	same	≥ 1	\checkmark	\checkmark	\checkmark	Re		$J_{\Lambda}=J_{\Lambda}^{\prime},\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(62)
2	same	≥ 1	\checkmark	\checkmark	\checkmark	Re	\checkmark	$J_{\Lambda}=J_{\Lambda}^{\prime}, \lambda_{V} \neq 0,\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(63)
3	same	≥ 1	\checkmark	\checkmark	\checkmark	Re		$J_{\Lambda}=J_{\Lambda}^{\prime},\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(64)
4	opposite	≥ 1				Re		$\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(66)
5	opposite	≥ 1				Re	\checkmark	$\lambda_{V} \neq 0,\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(117)
6	opposite	≥ 1				Re		$\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(118)
7	same	≥ 2		\checkmark	\checkmark	Re		$\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(119)
8	same	≥ 2		\checkmark	\checkmark	Re	\checkmark	$\lambda_{V} \neq 0,\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(120)
9	same	≥ 2		\checkmark	\checkmark	Re		$\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(121)
10	opposite	≥ 3				Re		$\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(122)
11	opposite	≥ 3				Re	\checkmark	$\lambda_{V} \neq 0,\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(123)
12	opposite	≥ 3				Re		$\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(124)
13	same	≥ 4			\checkmark	Re		$\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(125)
14	same	≥ 4			\checkmark	Re	\checkmark	$\lambda_{V} \neq 0,\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(126)
15	same	≥ 4			\checkmark	Re		$\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(127)
16	opposite	≥ 5				Re		$\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(128)
17	opposite	≥ 5				Re	\checkmark	$\lambda_{V} \neq 0,\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(129)
18	opposite	≥ 5				Re		$\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(130)
19	opposite	≥ 1				Re			(131)
20	opposite	≥ 1				Re	\checkmark		(132)
21	same	≥ 2		\checkmark	\checkmark	Re			(133)
22	same	≥ 2		\checkmark	\checkmark	Re	\checkmark		(134)
23	opposite	≥ 3				Re			(135)
24	opposite	≥ 3				Re	\checkmark	$\lambda_{V}=0,\left\|\lambda_{V}^{\prime}\right\|=1\left(\right.$ all possible $\lambda_{\Lambda}($) $)$	(136)
25	same	≥ 4			\checkmark	Re			(137)
26	same	≥ 4			\checkmark	Re	\checkmark		(138)
27	opposite	≥ 5				Re			(139)
28	opposite	≥ 5				Re	\checkmark		(140)

Anatomy of angular distribution

\Rightarrow 1D distribution in $\theta_{\text {/ }}$ has usual form, K_{2} generates lepton $A_{\text {FB }}$

$$
\left.\frac{\mathrm{d}^{3} \Gamma}{\mathrm{~d} q^{2} \mathrm{~d} m_{p K} \mathrm{~d} \cos \theta_{\ell}}=\frac{\sqrt{3}}{2} K_{1}+\frac{3}{2} K_{2} \cos \theta_{\ell}\right]+\frac{\sqrt{15}}{4} K_{3}\left(3 \cos ^{2} \theta_{\ell}-1\right)
$$

* Usual contributions, just adds Λ^{*} helicity $3 / 2$ in addition to $1 / 2$
\Rightarrow 1D distribution in θ_{p} gets larger number of terms
* Includes odd terms in $\cos \theta_{\rho}$ which vanish for single resonance

$$
\begin{aligned}
\frac{\mathrm{d}^{3} \Gamma}{\mathrm{~d} q^{2} \mathrm{~d} m_{p K} \mathrm{~d} \cos \theta_{p}}= & \frac{\sqrt{3}}{2} K_{1}-\frac{\sqrt{15}}{4} K_{7}+9 \frac{\sqrt{3}}{16} K_{13} \\
& +\left[\left(\frac{3}{2} K_{4}-3 \frac{\sqrt{21}}{4} K_{10}+15 \frac{\sqrt{33}}{16} K_{16}\right) \cos \theta_{p}\right] \\
& +\left(3 \frac{\sqrt{15}}{4} K_{7}-45 \frac{\sqrt{3}}{8} K_{13}\right) \cos ^{2} \theta_{p} \\
& +\left[\left(5 \frac{\sqrt{21}}{4} K_{10}-35 \frac{\sqrt{33}}{8} K_{16}\right) \cos ^{3} \theta_{p}\right] \\
& +\frac{105 \sqrt{3}}{16} K_{13} \cos ^{4} \theta_{p}+\frac{63 \sqrt{33}}{16} K_{16} \cos ^{5} \theta_{p}
\end{aligned}
$$

* With interference, $A_{\text {FB }}$ generated also on hadron side with K_{4}, K_{10} and K_{16}

Numerical studies

= Use SM Wilson coefficients used in JHEP 05 (2013) 137
= Use all well established states for which prediction for form-factors exists * Form-factors based on quark-model from Int. J. Mod. Phys. A 30 (2015) 1550172
\Rightarrow Most of the resonances modelled by relativistic Breit-Wigner
$\Rightarrow \Lambda(1405)$ uses Flattè model

- Investigated scenarios:
\Rightarrow Flip C_{9} / C_{10} or add right $C_{9}{ }^{\prime} / C_{10}$
\Rightarrow Global fit in Eur. Phys. J. C 82 (2022) 326

resonance	$m_{\Lambda}\left[\mathrm{GeV} / c^{2}\right]$	$\Gamma_{\Lambda}\left[\mathrm{GeV} / c^{2}\right]$	$2 J_{\Lambda}$	P_{Λ}	$\mathcal{B}(\Lambda \rightarrow N \bar{K})$
$\Lambda(1405)$	1.405	0.051	1	-	0.50
$\Lambda(1520)$	1.519	0.016	3	-	0.45
$\Lambda(1600)$	1.600	0.200	1	+	$0.15-0.30$
$\Lambda(1670)$	1.674	0.030	1	-	$0.20-0.30$
$\Lambda(1690)$	1.690	0.070	3	-	$0.20-0.30$
$\Lambda(1800)$	1.800	0.200	1	-	$0.25-0.40$
$\Lambda(1810)$	1.790	0.110	1	+	$0.05-0.35$
$\Lambda(1820)$	1.820	0.080	5	+	$0.55-0.65$
$\Lambda(1890)$	1.890	0.120	3	+	$0.24-0.36$
$\Lambda(2110)$	2.090	0.250	5	+	$0.05-0.25$

Isolated spin 5/2 resonance

\Rightarrow Only isolated $\Lambda(1820)$

- Grey band shows uncertainty from:
* Form-factor
* Widths etc.
* Non-factorisable corrections
\Rightarrow Often need rather large change in Wilson coefficients for effects larger than uncertainties

Ensemble of resonances

\Rightarrow Investigate sensitivity of observables with ensemble of different \wedge resonances
\Rightarrow Strong phases of all \wedge resonances set to 0 ($\pi / 2$ at the pole)
\Rightarrow Additional uncertainty from strong phases by varying them between $-\pi$ and π

Ensemble of resonances

\Rightarrow Some cases give good sensitivity to new physics without effects from strong phases
\Rightarrow Some observables like K_{4} has little sensitivity to new physics, but large effect from strong phases
\Rightarrow Several observables like K_{32} sensitive to new physics but require knowledge of strong phases

Ensemble of resonances

\Rightarrow Particular example of effect of strong phases
\Rightarrow Set strong phase of spin-3/2 resonances to π while keeping rest to 0

\Rightarrow Very large effects on K_{4} and K_{32}

* K_{32} shows significantly different behaviour

Summary

\Rightarrow For the first time looked into angular distribution of $\Lambda_{b} \rightarrow p K \mu \mu$ with interfering pK resonances up to spin 5/2
\Rightarrow Rich set of observables, 46 (178) in unpolarised (polarised) case

* Some only due to interference between resonances with different spin-parity
* Some exhibit sensitivity to Wilson coefficients independent of strong phases
* For some observables, sensitivity to Wilson coefficients is present, but strong phases need to be known
\Rightarrow Provided distribution in the angular basis suitable for the method of moments useful for future measurements

Backup

Definition of angles

Helicity amplitudes

$$
\begin{gathered}
\mathcal{H}_{\lambda_{\Lambda}, \lambda_{V}}^{\Lambda, 7^{(\prime)}}\left(q^{2}, m_{p K}\right)=-\frac{2 m_{b}}{q^{2}} \frac{\mathcal{C}_{7^{\prime \prime}}^{\mathrm{eff}}}{2} e^{i \delta_{\Lambda}}\left(H_{\lambda_{\Lambda}, \lambda_{V}}^{\Lambda, T} \mp H_{\lambda_{\Lambda}, \lambda_{V}}^{\Lambda, T 5}\right) \\
\mathcal{H}_{\lambda_{\Lambda}, \lambda_{V}}^{\Lambda, 9^{(\prime)}}\left(q^{2}, m_{p K}\right)= \\
\mathcal{H}_{\lambda_{\Lambda}, \lambda_{V}}^{\Lambda, 10^{(\prime)}}\left(q^{2}, m_{p K}\right)= \\
\frac{\mathcal{C}_{9^{\prime \prime}}^{\mathrm{eff}}}{2} e^{i \delta_{\Lambda}}\left(H_{\lambda_{\Lambda}, \lambda_{V}}^{\Lambda, V} \mp H_{\lambda_{\Lambda}, \lambda_{V}}^{\Lambda, A}\right) \\
\frac{\mathcal{C}_{10^{(\prime)}}^{2}}{2} e^{i \delta_{\Lambda}}\left(H_{\lambda_{\Lambda}, \lambda_{V}}^{\Lambda, V} \mp H_{\lambda_{\Lambda}, \lambda_{V}}^{\Lambda, A}\right) \\
H_{\lambda_{\Lambda}, \lambda_{V}}^{\Lambda, \Gamma^{\mu}}=\varepsilon_{\mu}^{*}\left(\lambda_{V}\right)\langle\Lambda| \bar{s} \Gamma^{\mu} b\left|\Lambda_{b}^{0}\right\rangle
\end{gathered}
$$

$\langle\Lambda| \bar{s} \Gamma^{\mu} b\left|\Lambda_{b}^{0}\right\rangle=\bar{u}\left(k, \lambda_{\Lambda}\right)\left[X_{\Gamma 1}\left(q^{2}\right) \gamma^{\mu}+X_{\Gamma 2}\left(q^{2}\right) v_{p}^{\mu}+X_{\Gamma 3}\left(q^{2}\right) v_{k}^{\mu}\right] u\left(p, \lambda_{b}\right)$
$\langle\Lambda| \bar{s} \Gamma^{\mu} b\left|\Lambda_{b}^{0}\right\rangle=\bar{u}_{\alpha}\left(k, \lambda_{\Lambda}\right)\left[v_{p}^{\alpha}\left(X_{\Gamma 1}\left(q^{2}\right) \gamma^{\mu}+X_{\Gamma 2}\left(q^{2}\right) v_{p}^{\mu}+X_{\Gamma 3}\left(q^{2}\right) v_{k}^{\mu}\right)+X_{\Gamma 4}\left(q^{2}\right) g^{\alpha \mu}\right] u\left(p, \lambda_{b}\right)$

$$
\begin{aligned}
\langle\Lambda| \bar{s} \Gamma^{\mu} b\left|\Lambda_{b}^{0}\right\rangle=\bar{u}_{\alpha \beta}\left(k, \lambda_{\Lambda}\right) v_{p}^{\alpha}\left[v _ { p } ^ { \beta } \left(X_{\Gamma 1}\left(q^{2}\right) \gamma^{\mu}\right.\right. & \left.+X_{\Gamma 2}\left(q^{2}\right) v_{p}^{\mu}+X_{\Gamma 3}\left(q^{2}\right) v_{k}^{\mu}\right) \\
& \left.+X_{\Gamma 4}\left(q^{2}\right) g^{\beta \mu}\right] u\left(p, \lambda_{b}\right)
\end{aligned}
$$

Spin 1/2
Spin 3/2

Spin 5/2

Amplitude combinations

i	parity combination	$J_{\Lambda}+J_{\Lambda}^{\prime}$	$\begin{aligned} & \sin \\ & 1 / 2 \end{aligned}$	$\begin{gathered} \text { rle st } \\ 3 / 2 \end{gathered}$		Re/Im	V/A	helicity combinations	Eq.
1	same	≥ 1	\checkmark	\checkmark	\checkmark	Re		$J_{\Lambda}=J_{\Lambda}^{\prime},\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(62)
2	same	≥ 1	\checkmark	\checkmark	\checkmark	Re	\checkmark	$J_{\Lambda}=J_{\Lambda}^{\prime}, \lambda_{V} \neq 0,\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(63)
3	same	≥ 1	\checkmark	\checkmark	\checkmark	Re		$J_{\Lambda}=J_{\Lambda}^{\prime},\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(64)
4	opposite	≥ 1				Re		$\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(66)
5	opposite	≥ 1				Re	\checkmark	$\lambda_{V} \neq 0,\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(117)
6	opposite	≥ 1				Re		$\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(118)
7	same	≥ 2		\checkmark	\checkmark	Re		$\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(119)
8	same	≥ 2		\checkmark	\checkmark	Re	\checkmark	$\lambda_{V} \neq 0,\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(120)
9	same	≥ 2		\checkmark	\checkmark	Re		$\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(121)
10	opposite	≥ 3				Re		$\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(122)
11	opposite	≥ 3				Re	\checkmark	$\lambda_{V} \neq 0,\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(123)
12	opposite	≥ 3				Re		$\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(124)
13	same	≥ 4			\checkmark	Re		$\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(125)
14	same	≥ 4			\checkmark	Re	\checkmark	$\lambda_{V} \neq 0,\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(126)
15	same	≥ 4			\checkmark	Re		$\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(127)
16	opposite	≥ 5				Re		$\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(128)
17	opposite	≥ 5				Re	\checkmark	$\lambda_{V} \neq 0,\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(129)
18	opposite	≥ 5				Re		$\left(\lambda_{\Lambda}, \lambda_{V}\right)=\left(\lambda_{\Lambda}, \lambda_{V}\right)^{\prime}$	(130)

Amplitude combinations

19	opposite	≥ 1			Re			(131)
20	opposite	≥ 1			Re	\checkmark		(132)
21	same	≥ 2	\checkmark	\checkmark	Re			
22	same	≥ 2	\checkmark	\checkmark	Re	\checkmark		(133)
23	opposite	≥ 3			Re		$\lambda_{V}=0,\left\|\lambda_{V}^{\prime}\right\|=1\left(\right.$ all possible $\left.\lambda_{\Lambda}^{(\prime)}\right)$	(135)
24	opposite	≥ 3		Re	\checkmark		(136)	
25	same	≥ 4		\checkmark	Re			(137)
26	same	≥ 4			Re	\checkmark	(138)	
27	opposite	≥ 5			Re		(139)	
28	opposite	≥ 5		Re	\checkmark	(140)		

Amplitude combinations

29	opposite	≥ 1			Im			(141)
30	opposite	≥ 1			Im	\checkmark		(142)
31	same	≥ 2	\checkmark	\checkmark	Im			(143)
32	same	≥ 2	\checkmark	\checkmark	Im	\checkmark		(67)
33	opposite	≥ 3			Im			(144)
34	opposite	≥ 3			Im	\checkmark	$\lambda_{V}=0,\left\|\lambda_{V}^{\prime}\right\|=1\left(\right.$ all possible $\left.\lambda_{\Lambda}{ }^{()}\right)$	(145)
35	same	≥ 4		\checkmark	Im			(146)
36	same	≥ 4		\checkmark	Im	\checkmark		(147)
37	opposite	≥ 5			Im			(148)
38	opposite	≥ 5			Im	\checkmark		(149)
39	same	≥ 2	\checkmark	\checkmark	Re			(150)
40	opposite	≥ 3			Re			(151)
41	same	≥ 4		\checkmark	Re			(152)
42	opposite	≥ 5			Re			(153)
43	same	≥ 2	\checkmark	\checkmark	Im		$\left\|\lambda_{V}\right\|=1, \lambda_{\Lambda}= \pm 1 / 2, \lambda_{\Lambda}=\mp 3 / 2$	(154)
44	opposite	≥ 3			Im			(155)
45	same	≥ 4		\checkmark	Im			(156)
46	opposite	≥ 5			Im			(157)

Explicit expressions for observables

$$
\begin{gathered}
\mathcal{A}_{\lambda_{\Lambda}, \lambda_{V}}^{Q, V}=N \sum_{\Lambda} \sum_{i=7^{(\prime)}, 9^{(\prime)}} \mathcal{H}_{\lambda_{\Lambda}, \lambda_{V}}^{\Lambda, \mathcal{O}_{i}} h_{\lambda_{\Lambda}, 1 / 2}^{\Lambda} \\
\mathcal{A}_{\lambda_{\Lambda}, \lambda_{V}}^{Q, A}=N \sum_{\Lambda} \sum_{i=10^{(\prime)}} \mathcal{H}_{\lambda_{\Lambda}, \lambda_{V}}^{\Lambda, \mathcal{O}_{i}} h_{\lambda_{\Lambda}, 1 / 2}^{\Lambda}, \\
K_{1}=\frac{1}{\sqrt{3}} \sum_{Q} \sum_{\lambda_{\Lambda}, \lambda_{V}}\left(\left|\mathcal{A}_{\lambda_{\Lambda}, \lambda_{V}}^{Q, V}\right|^{2}+V \longleftrightarrow A\right)
\end{gathered}
$$

$$
K_{3}=\frac{1}{2 \sqrt{15}} \sum_{Q} \sum_{\lambda= \pm 1}\left(\left|\mathcal{A}_{\frac{3}{2} \lambda, \lambda}^{Q, V}\right|^{2}+\left|\mathcal{A}_{\frac{1}{2} \lambda, \lambda}^{Q, V}\right|^{2}-2\left|\mathcal{A}_{\frac{1}{2} \lambda, 0}^{Q, V}\right|^{2}\right)+V \longleftrightarrow A
$$

$$
K_{32}=-\frac{1}{7 \sqrt{10}} \sum_{\lambda= \pm 1} \operatorname{Im}\left[+4 \sqrt{3} \mathcal{A}_{\frac{1}{2} \lambda, 0}^{\frac{5}{2}^{+}, V *} \mathcal{A}_{\frac{3}{2} \lambda, \lambda}^{\frac{5}{2}^{+}, A}+7 \sqrt{2} \mathcal{A}_{\frac{1}{2} \lambda, 0}^{\frac{3}{2}^{+}, V *} \mathcal{A}_{\frac{3}{2} \lambda, \lambda}^{\frac{3}{2}^{+}, A}\right.
$$

$$
+5 \lambda\left(\mathcal{A}_{\frac{1}{2} \lambda, 0}^{\frac{3}{2}+V *} \mathcal{A}_{-\frac{1}{2} \lambda,-\lambda}^{\frac{5}{2}+A}+\left(\frac{3}{2} \longleftrightarrow \frac{5}{2}\right)\right)
$$

$$
+7 \sqrt{2}\left(\mathcal{A}_{\frac{1}{2} \lambda, 0}^{\frac{1^{+}}{2}, V *} \mathcal{A}_{-\frac{1}{2} \lambda,-\lambda}^{\frac{5}{2}^{+}+A}+\sqrt{2} \mathcal{A}_{\frac{1}{2} \lambda, 0}^{\frac{1^{+}}{2}, V *} \mathcal{A}_{\frac{3}{2} \lambda, \lambda}^{\frac{5^{+}}{2}, A}-\left(\frac{5}{2} \longleftrightarrow \frac{1}{2}\right)\right)
$$

$$
+(V \longleftrightarrow A)+\left(P_{\Lambda} \longrightarrow-P_{\Lambda}\right)
$$

$$
\begin{aligned}
& K_{4}=\frac{1}{105} \sum_{\lambda= \pm 1} \operatorname{Re}\left[+\lambda\left(+35 \mathcal{A}_{\frac{1}{2} \lambda, 0}^{\frac{1}{2}^{+}, V *} \mathcal{A}_{\frac{1}{2} \lambda, 0}^{\frac{1}{2}^{-}, V}+35 \mathcal{A}_{\frac{1}{2} \lambda, \lambda}^{\frac{1}{2}^{2}, V *} \mathcal{A}_{\frac{1}{2} \lambda, \lambda}^{\frac{1}{2}^{-}, V}\right.\right. \\
& +21 \mathcal{A}_{\frac{3}{2} \lambda, \lambda}^{\frac{3^{+}}{2}, V *} \mathcal{A}_{\frac{3}{2} \lambda, \lambda}^{\frac{3^{-}}{}{ }^{-}, V}+7 \mathcal{A}_{\frac{1}{2} \lambda, 0}^{\frac{3^{+}}{2}}{ }^{+} V * \mathcal{A}_{\frac{1}{2} \lambda, 0}^{\frac{3^{-}}{2}, V}+7 \mathcal{A}_{\frac{1}{2} \lambda, \lambda}^{\frac{3}{2}^{+}, V *} \mathcal{A}_{\frac{1}{2} \lambda, \lambda}^{\frac{3^{-}}{2}, V} \\
& \left.+3 \mathcal{A}_{\frac{1}{2} \lambda, 0}^{\frac{5}{}^{+}}, V * \mathcal{A}_{\frac{1}{2} \lambda, 0}^{5^{-}}, V+3 \mathcal{A}_{\frac{1}{2} \lambda, \lambda}^{\frac{5^{+}}{2}, V *} \mathcal{A}_{\frac{1}{2} \lambda, \lambda}^{5^{-}}, V+9 \mathcal{A}_{\frac{3}{2} \lambda, \lambda}^{\frac{5}{2}^{+}}, V * \mathcal{A}_{\frac{3}{2} \lambda, \lambda}^{5^{-}}, V\right) \\
& +84 \mathcal{A}_{\frac{3}{2} \lambda, \lambda}^{\frac{3}{2}^{+}, V *} \mathcal{A}_{\frac{3}{2} \lambda, \lambda}^{\frac{5}{2}^{-}}, V+70 \sqrt{2} \mathcal{A}_{\frac{1}{2} \lambda, 0}^{\frac{1}{2}^{+}}, V * \mathcal{A}_{\frac{1}{2} \lambda, 0}^{\frac{3}{2}^{-}, V}+70 \sqrt{2} \mathcal{A}_{\frac{1}{2} \lambda, \lambda}^{\frac{1}{2}^{+}, V *} \mathcal{A}_{\frac{1}{2} \lambda, \lambda}^{\frac{3}{}^{-}}, V \\
& \left.+42 \sqrt{6} \mathcal{A}_{\frac{1}{2} \lambda, 0}^{\frac{3^{2}}{}{ }^{\frac{2}{2}}, \mathcal{A}^{*}} \mathcal{A}_{\frac{1}{2} \lambda, 0}^{\frac{5^{-}}{2}, V}+42 \sqrt{6} \mathcal{A}_{\frac{1}{2} \lambda, \lambda}^{\frac{3^{+}}{2}}, V^{*} \mathcal{A}_{\frac{1}{2} \lambda, \lambda}^{\frac{5^{2}}{2}, V}\right] \\
& +(V \longleftrightarrow A)+\left(P_{\Lambda} \longrightarrow-P_{\Lambda}\right),
\end{aligned}
$$

Wilson coefficients

= SM Wilson coefficients used in JHEP 05 (2013) 137
\Rightarrow Global fit from Eur. Phys. J. C 82 (2022) 326 * Consistent with existing measurements in $b \rightarrow s / l$

	Standard Model	global fit
\mathcal{C}_{1}	-0.2632	
\mathcal{C}_{2}	1.0111	
\mathcal{C}_{3}	-0.0055	
\mathcal{C}_{4}	-0.0806	
\mathcal{C}_{5}	0.0004	
\mathcal{C}_{6}	0.0009	
\mathcal{C}_{7}	-0.3120	-0.3120
\mathcal{C}_{9}	4.0749	2.9949
\mathcal{C}_{10}	-4.3085	-4.1585
$\mathcal{C}_{7^{\prime}}$	0.0000	0.0000
$\mathcal{C}_{9^{\prime}}$	0.0000	0.1600
$\mathcal{C}_{10^{\prime}}$	0.0000	-0.1800

