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Introduction
➡ Decays governed by b➝sll transitions are sensitive 

probes for new physics 
➡ Well studied for meson decays 
➡ Baryon decays provide complementary information 
❖ Different spin structure 
❖ Differences in hadronic structure 

➡ Decays Λb➝Λ*μμ with spin 1/2 and 3/2 Λ* studied 
previously (1903.10553, JHEP 07 (2020) 002, 
JHEP 06 (2019) 136, Eur. Phys. J. Plus 136 (2021) 
614) 

➡ In reality several interfering resonances 
❖ Study effects on angular distributions and observables
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Interference
➡ The full angular distribution with several interfering spin states can be easily 

written in the helicity formalism 
➡ Full decay rate 
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Figure 1: Illustration of the different angles appearing in the expression for the differential decay rate

when considering transverse polarisation. Three different rest-frames are used, that of the ⇤
0
b , the ⇤ and

the `
+
`
�

system. A common axis (in blue), given by the normal to the plane containing the ⇤
0
b direction

and the beam direction, is used to define the coordinate systems.

helicity frame, the amplitude for the ⇤ decay is

M⇤!pK�

�⇤
=

r
J⇤ +

1

2
h

⇤
�⇤,�p

(mpK)DJ⇤
�⇤,�p

(�p, ✓p, ��p)
⇤

. (15)

A spin-dependent factor is introduced to compensate for the normalisation of the Wigner D-matrix
elements.

The lepton system amplitude, h̃, is calculated in the helicity frame of the positively charged
lepton. After the rotation of the quantization axis from the lepton system helicity frame to the
`
+ helicity frame, the amplitude is

MV!`+`�

�V ,Oi
= h̃

Oi,�V
�1,�2

(q2)DJV
�V ,�1��2

(�`, ✓`, ��`)
⇤

. (16)

Note, that the spin of the virtual vector boson, JV , is implicitly contained in its polarization
�V = t, 0, ±.

Combining equations 14–16, with the results of Section 2,
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(17)

where ~⌦ = (cos ✓b, cos ✓p, �p, cos ✓`, �`). It is convenient to replace the sum over the ⇤
0
b helicities,

�b, by the spin-density matrix
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⇤��0
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X
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d
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(18)
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Λb decay amplitudes
dimuon system amplitudes

Λ* decay amplitudes

spin statesoperators

➡ Several terms will have same angular term, so want to group them

Wigner d-functions



Angular basis
➡ No unique option how to group terms, pick one based on associated 

Legendre polynomials 
❖ Related to angular momentum and makes it easy to keep track of terms 
❖ Resulting functions are orthogonal (own weights for the method of moments) 

➡ Final basis:

4

helicity combinations are constrained by |�⇤ � �V | = J⇤0
b

= 1
2 . As a result, only helicities of ±1

2

and ±3
2 are allowed for the ⇤ resonance, regardless of its spin.

There is no unique choice of basis for the functions fi(~⌦). In this paper, we choose to group
terms using orthogonal functions. The expansion of the differential decay rate involves products
of Wigner-D matrices,

D
JV
�V ,�1��2

(�`, ✓`, ��`)
⇤
D

J 0

V
�0

V ,�1��2
(�`, ✓`, ��`)D

J⇤
�⇤,�p

(�p, ✓p, ��p)
⇤
D

J 0

⇤
�0

⇤,�p
(�p, ✓p, ��p) , (48)

which can be written in terms of products of associated Legendre polynomials [61,62].
In the unpolarised case our angular basis functions are

f(~⌦; llep, lhad, |m|) =

r
8

3
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m
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m
lhad

P
|m|
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(cos ✓`)P

|m|

lhad
(cos ✓p)

⇥

8
><
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sin(|m|(�` + �p)) m < 0
1
p

2
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cos(|m|(�` + �p)) m > 0

,

(49)

where P
m
l (cos ✓) are the associated Legendre polynomials with the normalisation

n
m
l =

s
(2l + 1)(l � m)!

2(l + m)!
, (50)

llep is in the range 0 to 2JV (i.e. 0 to 2), lhad is in the range 0 to 2J⇤, |m|  lhad and |m|  llep.
This results in 46 different angular basis functions that are independent of the angle ✓b and
are either independent of �` and �p or depend only on the angle between the ⇤-resonance and
dilepton-system decay-planes, � = �` + �p. The angular functions arising in the unpolarised
case are given in Table 1. In order to reduce the number of arguments, the basis functions are
labelled fi(~⌦) with an index ranging from i =1–46.

In the polarised case, there are 46 additional terms that are proportional to cos ✓b but
otherwise have the same dependence on the remaining angles as the 46 terms appearing in
the unpolarised case. The cos ✓b dependent basis functions can be obtained by multiplying the
unpolarised ones in Eq. (49) with

p
3 cos ✓b and the corresponding observables by 1

p
3
P⇤0

b
. An

additional 86 terms also arise proportional to sin ✓b. The dependence on ✓b is evident from the
structure of the ⇤

0
b spin-density matrix, see Equation (18), arising from the rotation from the

initial frame to the ⇤ helicity frame. The sin ✓b dependent terms are accompanied by basis
functions

f(~⌦; llep, lhad, mlep, mhad) = 2n
mlep
llep

n
mhad
lhad

P
|mlep|
llep

(cos ✓`)P
|mhad|
lhad

(cos ✓p)

⇥
(

sin(|mlep|�` + |mhad|�p) mlep  0 and mhad  0

cos(|mlep|�` + |mhad|�p) mlep � 0 and mhad � 0
,

(51)

where |mlep � mhad| = 1. The angular terms proportional to sin ✓b are given in Table 2. The
origin of the numerical factors appearing in Eq. (49), Eq. (51) and the

p
3 in front of the cos ✓b

terms is discussed in Sec. 5.
The lepton and hadron sides of the decay are fully independent of each other and can generally
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➡ The angular distribution takes form

The momentum ~k
⇤
1 is not defined for resonances with a pole mass below the pK

� threshold.
A common solution is to replace the Breit-Wigner shape by a Flatté model (see for example
the description of the ⇤(1405) state by the LHCb collaboration in Refs. [59, 60]). In the Flatté
model, the total width is expressed as the sum of partial widths for the decays ⇤ ! ⌃+

⇡
� and

⇤ ! pK
�. Identical widths are assumed for both decays, up-to phase-space factors. When

evaluating the partial widths, ~k
⇤
1 is replaced by the momentum of the ⇡

� at the pole-mass of the
resonance. Equation 42 only includes the contribution from the decay to pK

� in �partial. This
approach is also used for the ⇤(1405) state in this work.

The amplitude with the opposite proton helicity, h
⇤
�⇤,�1/2(mpK), is given by parity conserva-

tion
h

⇤
�⇤,�1/2(mpK) = P⇤(�1)l+1

h
⇤
�⇤,1/2(mpK) , (43)

where P⇤ is the parity of the ⇤ resonance.

3.3 Helicity amplitudes for the leptonic current

The lepton amplitudes are the projections of the lepton currents onto polarization vectors "µ

and have the general form

h̃
JV
�1,�2

= "µ(�1 � �2)ū(q2, �2)�
µ
v(q1, �1) , (44)

where �1 � �2 = 0 with JV = 0 (JV = 1) corresponds to the time-like (longitudinal) polarization.
Explicit expressions for the polarisation vectors are given in Appendix B. The lepton amplitudes
are calculated in the positively-charged lepton helicity-frame. There are two relevant Lorentz
structures, corresponding to vector (�µ = �

µ) and axialvector (�µ = �
µ
�5) currents. The vector

current appears with Wilson coefficients C7(0) and C9(0) and the axialvector current with C10(0) .
Inserting the Lorentz structures into the amplitudes yields

h̃
V,0
+1/2,+1/2 = 0 , h̃

A,0
+1/2,+1/2 = 2m` ,

h̃
V,1
+1/2,+1/2 = 2m` , h̃

A,1
+1/2,+1/2 = 0 ,

h̃
V,1
+1/2,�1/2 = �

p
2q2 , h̃

A,1
+1/2,�1/2 =

p
2q2�` ,

h̃
V,JV
��1,��2

= �h̃
V,JV
+�1,+�2

, h̃
A,JV
��1,��2

= h̃
A,JV
+�1,+�2

,

(45)

where V and A refer to (axial)vector and �` is the lepton velocity in the dilepton rest frame, i.e.

�` =
|~q1|
q
0
1

=

s

1 �
4m

2
`

q2
. (46)

4 Angular distribution

Expanding the expression for the differential decay rate and performing sums over all of the
relevant helicities and ⇤ resonances up-to J⇤ = 5

2 yields

32⇡
2

3

d7�

dq2 dmpK d~⌦
=

178X

i=1

Ki(q
2
, mpK)fi(~⌦) . (47)

The Ki are bilinear combinations of products of the amplitudes for the ⇤
0
b and ⇤ decays and will

be examined in more detail in Sec. 6. We simplify the expansion of the differential decay rate by
noting that the helicity of the ⇤ resonance can take any value within |�⇤|  J⇤ and that the

9

Ki(q2,mpK) are bilinear 
combinations of 
products of amplitudes 



Anatomy of angular distribution
➡ There are 178 terms when 

polarisation is allowed to be non-
zero 
❖ 46 of these present also with zero 

polarisation and have no θb 
dependence (mlep=mhad) 

❖ For polarised case, 46 terms have 
cos θb dependence while rest of the 
angles are same as unpolarised case 

❖ Remaining terms have sin θb 
dependence with basis functions 
where mlep≠mhad

5

Table 3: Amplitude combinations appearing in the coefficient Ki. The parity combination and allowed

spins indicate which states interfere. Checkmarks in the three columns labelled single states indicate

whether the coefficient appears in the single resonance case for spin J⇤ = 1
2 ,

3
2 , or

5
2 . Some coefficients

take the real part (Re) others the imaginary part (Im) of the amplitude products. A checkmark in the

column V/A shows that a coefficient arises from vector-axialvector interference. The right-most column

indicates the equation defining the observable Ki.

i
parity

J⇤ + J
0
⇤

single states
Re/Im V/A helicity combinations Eq.

combination 1/2 3/2 5/2

1 same � 1 X X X Re J⇤ = J
0
⇤, (�⇤, �V ) = (�⇤, �V )0

(62)

2 same � 1 X X X Re X J⇤ = J
0
⇤, �V 6= 0, (�⇤, �V ) = (�⇤, �V )0

(63)

3 same � 1 X X X Re J⇤ = J
0
⇤, (�⇤, �V ) = (�⇤, �V )0

(64)

4 opposite � 1 Re (�⇤, �V ) = (�⇤, �V )0
(66)

5 opposite � 1 Re X �V 6= 0, (�⇤, �V ) = (�⇤, �V )0
(117)

6 opposite � 1 Re (�⇤, �V ) = (�⇤, �V )0
(118)

7 same � 2 X X Re (�⇤, �V ) = (�⇤, �V )0
(119)

8 same � 2 X X Re X �V 6= 0, (�⇤, �V ) = (�⇤, �V )0
(120)

9 same � 2 X X Re (�⇤, �V ) = (�⇤, �V )0
(121)

10 opposite � 3 Re (�⇤, �V ) = (�⇤, �V )0
(122)

11 opposite � 3 Re X �V 6= 0, (�⇤, �V ) = (�⇤, �V )0
(123)

12 opposite � 3 Re (�⇤, �V ) = (�⇤, �V )0
(124)

13 same � 4 X Re (�⇤, �V ) = (�⇤, �V )0
(125)

14 same � 4 X Re X �V 6= 0, (�⇤, �V ) = (�⇤, �V )0
(126)

15 same � 4 X Re (�⇤, �V ) = (�⇤, �V )0
(127)

16 opposite � 5 Re (�⇤, �V ) = (�⇤, �V )0
(128)

17 opposite � 5 Re X �V 6= 0, (�⇤, �V ) = (�⇤, �V )0
(129)

18 opposite � 5 Re (�⇤, �V ) = (�⇤, �V )0
(130)

19 opposite � 1 Re

�V = 0, |�0
V | = 1 (all possible �

(0)
⇤ )

(131)

20 opposite � 1 Re X (132)

21 same � 2 X X Re (133)

22 same � 2 X X Re X (134)

23 opposite � 3 Re (135)

24 opposite � 3 Re X (136)

25 same � 4 X Re (137)

26 same � 4 X Re X (138)

27 opposite � 5 Re (139)

28 opposite � 5 Re X (140)

29 opposite � 1 Im

�V = 0, |�0
V | = 1 (all possible �

(0)
⇤ )

(141)

30 opposite � 1 Im X (142)

31 same � 2 X X Im (143)

32 same � 2 X X Im X (67)

33 opposite � 3 Im (144)

34 opposite � 3 Im X (145)

35 same � 4 X Im (146)

36 same � 4 X Im X (147)

37 opposite � 5 Im (148)

38 opposite � 5 Im X (149)

39 same � 2 X X Re

|�(0)
V | = 1, �⇤ = ±1/2, �

0
⇤ = ⌥3/2

(150)

40 opposite � 3 Re (151)

41 same � 4 X Re (152)

42 opposite � 5 Re (153)

43 same � 2 X X Im (154)

44 opposite � 3 Im (155)

45 same � 4 X Im (156)

46 opposite � 5 Im (157)

15



Anatomy of angular distribution
➡ 1D distribution in θl has usual 

form, K2 generates lepton AFB 
❖ Usual contributions, just adds Λ* 

helicity 3/2 in addition to 1/2 
➡ 1D distribution in θp gets larger 

number of terms 
❖ Includes odd terms in cos θp which 

vanish for single resonance 
❖ With interference, AFB generated also 

on hadron side with K4, K10 and K16 
contributing
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Table 1: Orthogonal basis functions f93(⌦)–f135(⌦) necessary to describe the angular distribution

of polarised ⇤
0
b decays with cos(|mhad|�p + |mlep|�`) dependence, where P

m
l (cos ✓) are associated

Legendre polynomials. The remaining functions, numbered 136–178 can be obtained by replacing

cos(|mhad|�p + |mlep|�`) with sin(|mhad|�p + |mlep|�`).

i fi(~⌦) i fi(~⌦)

93
q

3
2 sin ✓bP

1
1 (cos ✓p)P 0

0 (cos ✓`) cos(�p) 115
q

21
2 sin ✓bP

0
3 (cos ✓p)P 1

1 (cos ✓`) cos(�`)

94 3
p

2
sin ✓bP

1
1 (cos ✓p)P 0

1 (cos ✓`) cos(�p) 116
q

15
2 sin ✓bP

0
4 (cos ✓p)P 1

2 (cos ✓`) cos(�`)

95
q

15
2 sin ✓bP

1
1 (cos ✓p)P 0

2 (cos ✓`) cos(�p) 117 3
q

3
2 sin ✓bP

0
4 (cos ✓p)P 1

1 (cos ✓`) cos(�`)

96
q

5
6 sin ✓bP

1
2 (cos ✓p)P 0

0 (cos ✓`) cos(�p) 118
q

55
6 sin ✓bP

0
5 (cos ✓p)P 1

2 (cos ✓`) cos(�`)

97
q

5
2 sin ✓bP

1
2 (cos ✓p)P 0

1 (cos ✓`) cos(�p) 119
q

33
2 sin ✓bP

0
5 (cos ✓p)P 1

1 (cos ✓`) cos(�`)

98 5
p

6
sin ✓bP

1
2 (cos ✓p)P 0

2 (cos ✓`) cos(�p) 120 5
12 sin ✓bP

2
2 (cos ✓p)P 1

2 (cos ✓`) cos(2�p + �`)

99 1
2

q
7
3 sin ✓bP

1
3 (cos ✓p)P 0

0 (cos ✓`) cos(�p) 121 1
4

p
5 sin ✓bP

2
2 (cos ✓p)P 1

1 (cos ✓`) cos(2�p + �`)

100 1
2

p
7 sin ✓bP

1
3 (cos ✓p)P 0

1 (cos ✓`) cos(�p) 122 1
12

p
7 sin ✓bP

2
3 (cos ✓p)P 1

2 (cos ✓`) cos(2�p + �`)

101 1
2

q
35
3 sin ✓bP

1
3 (cos ✓p)P 0

2 (cos ✓`) cos(�p) 123 1
4

q
7
5 sin ✓bP

2
3 (cos ✓p)P 1

1 (cos ✓`) cos(2�p + �`)

102 3
2
p

5
sin ✓bP

1
4 (cos ✓p)P 0

0 (cos ✓`) cos(�p) 124 1
4
p

3
sin ✓bP

2
4 (cos ✓p)P 1

2 (cos ✓`) cos(2�p + �`)

103 3
2

q
3
5 sin ✓bP

1
4 (cos ✓p)P 0

1 (cos ✓`) cos(�p) 125 1
4

q
3
5 sin ✓bP

2
4 (cos ✓p)P 1

1 (cos ✓`) cos(2�p + �`)

104 3
2 sin ✓bP

1
4 (cos ✓p)P 0

2 (cos ✓`) cos(�p) 126 1
12

q
11
7 sin ✓bP

2
5 (cos ✓p)P 1

2 (cos ✓`) cos(2�p + �`)

105
q

11
30 sin ✓bP

1
5 (cos ✓p)P 0

0 (cos ✓`) cos(�p) 127 1
4

q
11
35 sin ✓bP

2
5 (cos ✓p)P 1

1 (cos ✓`) cos(2�p + �`)

106
q

11
10 sin ✓bP

1
5 (cos ✓p)P 0

1 (cos ✓`) cos(�p) 128 1
4

p
5 sin ✓bP

1
1 (cos ✓p)P 2

2 (cos ✓`) cos(�p + 2�`)

107
q

11
6 sin ✓bP

1
5 (cos ✓p)P 0

2 (cos ✓`) cos(�p) 129 5
12 sin ✓bP

1
2 (cos ✓p)P 2

2 (cos ✓`) cos(�p + 2�`)

108
q

5
6 sin ✓bP

0
0 (cos ✓p)P 1

2 (cos ✓`) cos(�`) 130 1
12

q
35
2 sin ✓bP

1
3 (cos ✓p)P 2

2 (cos ✓`) cos(�p + 2�`)

109
q

3
2 sin ✓bP

0
0 (cos ✓p)P 1

1 (cos ✓`) cos(�`) 131 1
4

q
3
2 sin ✓bP

1
4 (cos ✓p)P 2

2 (cos ✓`) cos(�p + 2�`)

110
q

5
2 sin ✓bP

0
1 (cos ✓p)P 1

2 (cos ✓`) cos(�`) 132 1
12

p
11 sin ✓bP

1
5 (cos ✓p)P 2

2 (cos ✓`) cos(�p + 2�`)

111 3
p

2
sin ✓bP

0
1 (cos ✓p)P 1

1 (cos ✓`) cos(�`) 133 1
24

q
7
6 sin ✓bP

3
3 (cos ✓p)P 2

2 (cos ✓`) cos(3�p + 2�`)

112 5
p

6
sin ✓bP

0
2 (cos ✓p)P 1

2 (cos ✓`) cos(�`) 134 1
8
p

42
sin ✓bP

3
4 (cos ✓p)P 2

2 (cos ✓`) cos(3�p + 2�`)

113
q

15
2 sin ✓bP

0
2 (cos ✓p)P 1

1 (cos ✓`) cos(�`) 135 1
48

q
11
42 sin ✓bP

3
5 (cos ✓p)P 2

2 (cos ✓`) cos(3�p + 2�`)

114
q

35
6 sin ✓bP

0
3 (cos ✓p)P 1

2 (cos ✓`) cos(�`)

be considered separately. Integrating over all of the angles except for ✓p yields

d3�

dq2 dmpK dcos ✓p
=

p
3

2
K1 �

p
15

4
K7 + 9

p
3

16
K13

+

 
3

2
K4 � 3

p
21

4
K10 + 15

p
33

16
K16

!
cos ✓p

+

 
3

p
15

4
K7 � 45

p
3

8
K13

!
cos2 ✓p

+

 
5

p
21

4
K10 � 35

p
33

8
K16

!
cos3 ✓p

+
105

p
3

16
K13 cos4 ✓p +

63
p

33

16
K16 cos5 ✓p .

(52)
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Table 2: Orthogonal basis functions f93(⌦)–f135(⌦) necessary to describe the angular distribution

of polarised ⇤
0
b decays with cos(|mhad|�p + |mlep|�`) dependence, where P

m
l (cos ✓) are associated

Legendre polynomials. The remaining functions, numbered 136–178 can be obtained by replacing

cos(|mhad|�p + |mlep|�`) with sin(|mhad|�p + |mlep|�`).

i fi(~⌦) i fi(~⌦)

93
q

3
2 sin ✓bP

1
1 (cos ✓p)P 0

0 (cos ✓`) cos(�p) 115
q

21
2 sin ✓bP

0
3 (cos ✓p)P 1

1 (cos ✓`) cos(�`)

94 3
p

2
sin ✓bP

1
1 (cos ✓p)P 0

1 (cos ✓`) cos(�p) 116
q

15
2 sin ✓bP

0
4 (cos ✓p)P 1

2 (cos ✓`) cos(�`)

95
q

15
2 sin ✓bP

1
1 (cos ✓p)P 0

2 (cos ✓`) cos(�p) 117 3
q

3
2 sin ✓bP

0
4 (cos ✓p)P 1

1 (cos ✓`) cos(�`)

96
q

5
6 sin ✓bP

1
2 (cos ✓p)P 0

0 (cos ✓`) cos(�p) 118
q

55
6 sin ✓bP

0
5 (cos ✓p)P 1

2 (cos ✓`) cos(�`)

97
q

5
2 sin ✓bP

1
2 (cos ✓p)P 0

1 (cos ✓`) cos(�p) 119
q

33
2 sin ✓bP

0
5 (cos ✓p)P 1

1 (cos ✓`) cos(�`)

98 5
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The higher powers of cos ✓p are associated with higher spin combinations. Each state individually
contributes to powers of cos ✓p up-to 2J⇤. If interfering resonances have spins J⇤ and J

0

⇤, their
interference can contribute to powers up-to J⇤ + J

0

⇤. The odd powers of cos ✓p result from
interference between states with different parities. Integrating over all of the angles except ✓`

instead yields

d3�

dq2 dmpK dcos ✓`
=

p
3

2
K1 +

3

2
K2 cos ✓` +

p
15

4
K3(3 cos2 ✓` � 1) . (53)

The observable K2 generates the lepton-side forward-backward asymmetry that is a feature of
b! s`

+
`
� transitions that arises from interference between the vector and axialvector leptonic

currents [63].
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Numerical studies
➡ Use SM Wilson coefficients used in JHEP 05 (2013) 137 
➡ Use all well established states for which prediction for form-factors exists 
❖ Form-factors based on quark-model from Int. J. Mod. Phys. A 30 (2015) 1550172
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Table 4: Resonance parameters used in the predictions presented in this paper. The parameters of the

resonances are taken from Ref. [65]. The branching fraction of the ⇤ resonance to pK
�

is calculated

from the centre of the range and scaled according to isospin considerations. The branching fraction of

⇤(1405) ! NK assumes equal partial widths for ⇤(1405) ! NK and ⇤(1405) ! ⌃⇡.

resonance m⇤ [ GeV/c2 ] �⇤ [ GeV/c2 ] 2J⇤ P⇤ B(⇤ ! NK)

⇤(1405) 1.405 0.051 1 � 0.50
⇤(1520) 1.519 0.016 3 � 0.45
⇤(1600) 1.600 0.200 1 + 0.15 – 0.30
⇤(1670) 1.674 0.030 1 � 0.20 – 0.30
⇤(1690) 1.690 0.070 3 � 0.20 – 0.30
⇤(1800) 1.800 0.200 1 � 0.25 – 0.40
⇤(1810) 1.790 0.110 1 + 0.05 – 0.35
⇤(1820) 1.820 0.080 5 + 0.55 – 0.65
⇤(1890) 1.890 0.120 3 + 0.24 – 0.36
⇤(2110) 2.090 0.250 5 + 0.05 – 0.25

yield identical predictions for the differential branching fraction as its value only depends on
|C10|2. The gray band in Fig. 2 represents an estimate of the theoretical uncertainty on the SM
prediction. This is determined by varying the magnitude of each form factor, X�i , according to
a normal distribution with a width of 10%. Moreover, there can be non-factorisable corrections
to the decay amplitudes (which cannot be expressed in terms of local form-factors and Wilson
coefficients). Such contributions can introduce relative phases between the amplitudes for a single
decay. This can make observables that depend on the imaginary part of bilinear combinations
of amplitudes, like K32, non-zero. To estimate the uncertainty due to these non-factorisable
corrections, each amplitude is varied according to

H ! (1 + a)H , (74)

where a is uniformly distributed inside a circle of radius 0.1 in the complex plane. This is similar
to the approach used for B

0 ! K
⇤0

`
+
`
� decays in Ref. [66]. To propagate these variations to the

observables, 200 different SM ensembles are produced and the moments extracted. The standard
deviation of the resulting moments is taken as the uncertainty on the prediction.

Figure 2: Differential branching fraction in mpK and q
2

for a single ⇤(1820) resonance assuming the SM

(black line) and different NP scenarios (coloured lines). The SM and C10 = �CSM
10 scenarios yield identical

predictions for the differential branching fraction. The uncertainty on the SM prediction is represented

by the gray band.

Figure 3 shows the angular observables as defined in Equation (57) that are accompanied by

20

➡ Most of the resonances modelled 
by relativistic Breit-Wigner 

➡ Λ(1405) uses Flattè model 
➡ Investigated scenarios: 
➡ Flip C9/C10 or add right C9’/C10’  

➡ Global fit in Eur. Phys. J. C 82 
(2022) 326

https://doi.org/10.1007/JHEP05(2013)137
https://doi.org/10.1142/S0217751X15501729
http://Eur.%20Phys.%20J.%20C%2082%20(2022)%20326
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Isolated spin 5/2 resonance
➡ Only isolated Λ(1820) 
➡ Grey band shows 

uncertainty from: 
❖ Form-factor 
❖ Widths etc. 
❖ Non-factorisable corrections 

➡ Often need rather large 
change in Wilson 
coefficients for effects 
larger than uncertainties
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basis functions that are independent of �. In order to obtain continuous curves for the predictions,
the values of the moments are evaluated in fine bins of q

2 and their values are smoothed using
Gaussian kernels. Some residual numerical variation can be seen in the figures when the values
of the observables are small, for example in the high q

2 region of K14,15. The increase in the SM
uncertainty band at high q

2 is due to the reduced phase-space, and resulting small sample size,
in this region. The q

2 range in the figures is restricted to the allowed range at the pole mass
mpK = 1.82GeV/c2. The observables associated with the angular function P

0
1 (cos ✓`), K2,8,14,

are highly sensitive to modifications of the Wilson coefficients in particular to changes in the
left-handed currents. This is similar to what is seen in the forward-backward asymmetry of other
b! s`

+
`
� decays. The observables accompanying the basis function P

0
2 (cos ✓`), K3,9,15, only

differ from the SM for changes in the left-handed vector currents. The differences here are largest
for small q

2, where C9–C7 interference is important. Finally, due to the very similar structures of
K1,7,13, as discussed Section 6, the values of K7,13 are almost identical for the different scenarios
considered in this section. In the single resonance case, these observables serve as a useful check
of the form-factor description. In general, as the order of the ✓p basis function increases (0, 2, 4
for the top, mid, and bottom row of Fig. 3) the magnitude of the corresponding observable
decreases.
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Figure 3: Angular observables K2�15, as a function of q
2

for the spin-
5
2 ⇤(1820) resonance assuming the

SM (black line) and different non-SM scenarios (using the same colour code as in Fig. 2). The uncertainty

on the SM prediction is represented by the gray band.

Figure 4 shows the angular observables that accompany the basis functions with cos � or
cos 2� dependency. Mathematically, these observables depend on the real part of products of
different ⇤ helicity amplitudes. The observables K21 and K39 are sensitive to the introduction of
right-handed currents. The observable K21 is also sensitive to changes in the left-handed vector
current. Even in these extreme scenarios, the changes from the SM prediction only exceed the
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Table 4: Resonance parameters used in the predictions presented in this paper. The parameters of the

resonances are taken from Ref. [65]. The branching fraction of the ⇤ resonance to pK
�

is calculated

from the centre of the range and scaled according to isospin considerations. The branching fraction of

⇤(1405) ! NK assumes equal partial widths for ⇤(1405) ! NK and ⇤(1405) ! ⌃⇡.

resonance m⇤ [ GeV/c2 ] �⇤ [ GeV/c2 ] 2J⇤ P⇤ B(⇤ ! NK)

⇤(1405) 1.405 0.051 1 � 0.50
⇤(1520) 1.519 0.016 3 � 0.45
⇤(1600) 1.600 0.200 1 + 0.15 – 0.30
⇤(1670) 1.674 0.030 1 � 0.20 – 0.30
⇤(1690) 1.690 0.070 3 � 0.20 – 0.30
⇤(1800) 1.800 0.200 1 � 0.25 – 0.40
⇤(1810) 1.790 0.110 1 + 0.05 – 0.35
⇤(1820) 1.820 0.080 5 + 0.55 – 0.65
⇤(1890) 1.890 0.120 3 + 0.24 – 0.36
⇤(2110) 2.090 0.250 5 + 0.05 – 0.25

yield identical predictions for the differential branching fraction as its value only depends on
|C10|2. The gray band in Fig. 2 represents an estimate of the theoretical uncertainty on the SM
prediction. This is determined by varying the magnitude of each form factor, X�i , according to
a normal distribution with a width of 10%. Moreover, there can be non-factorisable corrections
to the decay amplitudes (which cannot be expressed in terms of local form-factors and Wilson
coefficients). Such contributions can introduce relative phases between the amplitudes for a single
decay. This can make observables that depend on the imaginary part of bilinear combinations
of amplitudes, like K32, non-zero. To estimate the uncertainty due to these non-factorisable
corrections, each amplitude is varied according to

H ! (1 + a)H , (74)

where a is uniformly distributed inside a circle of radius 0.1 in the complex plane. This is similar
to the approach used for B

0 ! K
⇤0

`
+
`
� decays in Ref. [66]. To propagate these variations to the

observables, 200 different SM ensembles are produced and the moments extracted. The standard
deviation of the resulting moments is taken as the uncertainty on the prediction.
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Figure 2: Differential branching fraction in mpK and q
2

for a single ⇤(1820) resonance assuming the SM

(black line) and different NP scenarios (coloured lines). The SM and C10 = �CSM
10 scenarios yield identical

predictions for the differential branching fraction. The uncertainty on the SM prediction is represented

by the gray band.

Figure 3 shows the angular observables as defined in Equation (57) that are accompanied by
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Ensemble of resonances
➡ Investigate sensitivity of observables with ensemble of different Λ resonances 
➡ Strong phases of all Λ resonances set to 0 (π/2 at the pole) 
➡ Additional uncertainty from strong phases by varying them between -π and π

9
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Figure 5: Differential branching fraction as a function of mpK and q
2

for an ensemble of ⇤ resonances

in the SM (black line) and different non-SM scenarios (coloured lines). The possible values given the

unknown phases, �⇤, is represented by the lighter gray band and the other uncertainties by the darker gray

band. For q
2 >⇠ 12.4 GeV
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4
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resonances.

Figure 6: Observables K2,3,4,32 as a function of q
2

for an ensemble of ⇤ resonances in the SM (black line)

and different non-SM scenarios (coloured lines using the same colour code as in Fig. 5.). The possible

values given the unknown phase, �⇤, is represented by the lighter gray band and the theory uncertainty

by the darker gray band. For q
2 >⇠ 12.4GeV

2
/c

4
, the available phase-space suppresses the contribution

from higher-mass ⇤ resonances.

appear due to interference between states with different spins. If the phases can be measured K32

exhibits interesting sensitivity to the different non-SM scenarios. Interestingly, different choices
of QCD phase give different sensitivities to the different non-SM scenarios. This is illustrated
in Fig. 7, which shows the observables K4 and K32 after changing the phase of all resonances
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Figure 6: Observables K2,3,4,32 as a function of q
2

for an ensemble of ⇤ resonances in the SM (black line)

and different non-SM scenarios (coloured lines using the same colour code as in Fig. 5.). The possible

values given the unknown phase, �⇤, is represented by the lighter gray band and the theory uncertainty

by the darker gray band. For q
2 >⇠ 12.4GeV

2
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4
, the available phase-space suppresses the contribution

from higher-mass ⇤ resonances.

appear due to interference between states with different spins. If the phases can be measured K32

exhibits interesting sensitivity to the different non-SM scenarios. Interestingly, different choices
of QCD phase give different sensitivities to the different non-SM scenarios. This is illustrated
in Fig. 7, which shows the observables K4 and K32 after changing the phase of all resonances
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Ensemble of resonances
➡ Some cases give good 

sensitivity to new physics 
without effects from strong 
phases 

➡ Some observables like K4 has 
little sensitivity to new physics, 
but large effect from strong 
phases 

➡ Several observables like K32 
sensitive to new physics but 
require knowledge of strong 
phases

10

Figure 5: Differential branching fraction as a function of mpK and q
2

for an ensemble of ⇤ resonances

in the SM (black line) and different non-SM scenarios (coloured lines). The possible values given the

unknown phases, �⇤, is represented by the lighter gray band and the other uncertainties by the darker gray

band. For q
2 >⇠ 12.4 GeV

2
/c

4
, the available phase-space suppresses the contribution from higher-mass ⇤

resonances.
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Figure 6: Observables K2,3,4,32 as a function of q
2

for an ensemble of ⇤ resonances in the SM (black line)

and different non-SM scenarios (coloured lines using the same colour code as in Fig. 5.). The possible

values given the unknown phase, �⇤, is represented by the lighter gray band and the theory uncertainty

by the darker gray band. For q
2 >⇠ 12.4GeV

2
/c

4
, the available phase-space suppresses the contribution

from higher-mass ⇤ resonances.

appear due to interference between states with different spins. If the phases can be measured K32

exhibits interesting sensitivity to the different non-SM scenarios. Interestingly, different choices
of QCD phase give different sensitivities to the different non-SM scenarios. This is illustrated
in Fig. 7, which shows the observables K4 and K32 after changing the phase of all resonances
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Ensemble of resonances
➡ Particular example of effect of 

strong phases 
➡ Set strong phase of spin-3/2 

resonances to π while 
keeping rest to 0 

➡ Very large effects on K4 and 
K32 

❖ K32 shows significantly different 
behaviour
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for an ensemble of ⇤ resonances

in the SM (black line) and different non-SM scenarios (coloured lines). The possible values given the

unknown phases, �⇤, is represented by the lighter gray band and the other uncertainties by the darker gray

band. For q
2 >⇠ 12.4 GeV

2
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, the available phase-space suppresses the contribution from higher-mass ⇤

resonances.
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Figure 6: Observables K2,3,4,32 as a function of q
2

for an ensemble of ⇤ resonances in the SM (black line)

and different non-SM scenarios (coloured lines using the same colour code as in Fig. 5.). The possible

values given the unknown phase, �⇤, is represented by the lighter gray band and the theory uncertainty

by the darker gray band. For q
2 >⇠ 12.4GeV

2
/c

4
, the available phase-space suppresses the contribution

from higher-mass ⇤ resonances.

appear due to interference between states with different spins. If the phases can be measured K32

exhibits interesting sensitivity to the different non-SM scenarios. Interestingly, different choices
of QCD phase give different sensitivities to the different non-SM scenarios. This is illustrated
in Fig. 7, which shows the observables K4 and K32 after changing the phase of all resonances
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with spin-3
2 to ⇡, �1520 = �1690 = �1890 = ⇡, but leaving the others at zero. With �⇤ = 0, the

global-fit values for the Wilson coefficients give rise to observables that are compatible with the
SM (Fig. 6). However, after modifying the phases larger differences are seen in K32 between the
two scenarios (Fig. 7).
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Figure 7: Phase-dependent observables K4 and K32 as a function of q
2

when setting the phases of the

spin-
3
2 resonances to ⇡, �1520 = �1690 = �1890 = ⇡, while keeping all other phases at zero. The lines and

bands carry the same meaning as in previous figures. For q
2 >⇠ 12.4GeV

2
/c

4
, the available phase space

suppresses the contribution from higher-mass ⇤ resonances.

9 Conclusion

This paper presents a first expression for the angular distribution of ⇤
0
b ! pK

�
`
+
`
� decays

comprising a mixture of ⇤ resonances with spin  5
2 . Considering interference terms gives rise

to a complex angular structure and a large number of observables. The resulting distribution
contains 46 (178) angular terms for unpolarised (polarised) ⇤

0
b baryons that can be measured. In

this paper, we explore the form of the angular observables and their sensitivity to modifications of
the Wilson coefficients. A focus is given to observables appearing in the unpolarised case, as the
⇤

0
b baryon polarisation at existing experiments is known to be small. A particular challenge in

interpreting the experimental data on ⇤
0
b ! pK

�
`
+
`
� decays will be the unknown QCD phases

between the different resonances. Some of the observables explored in this paper only provide
useful sensitivity to non-SM scenarios once the phases have been measured. Others, including
the well known lepton forward-backward asymmetry are almost independent of the choice of
phase and offer excellent sensitivity to different scenarios. There is also a set of observables that
arise purely due to interference of different ⇤ resonances. These are virtually independent of the
values of the Wilson coefficients and can be used to measure the phases and to give valuable
input into the validity of form-factor predictions. The choice of orthogonal basis functions for
the angular distribution made in this paper is such that all of the angular observable can be
readily extracted from data using a moment analysis using the same set of functions at existing
or future experiments.
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Summary
➡ For the first time looked into angular distribution of Λb➝pKμμ with 

interfering pK resonances up to spin 5/2 
➡ Rich set of observables, 46 (178) in unpolarised (polarised) case 
❖ Some only due to interference between resonances with different spin-parity 
❖ Some exhibit sensitivity to Wilson coefficients independent of strong phases 
❖ For some observables, sensitivity to Wilson coefficients is present, but strong 

phases need to be known 
➡ Provided distribution in the angular basis suitable for the method of 

moments useful for future measurements
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Figure 1: Illustration of the different angles appearing in the expression for the differential decay rate

when considering transverse polarisation. Three different rest-frames are used, that of the ⇤
0
b , the ⇤ and

the `
+
`
�

system. A common axis (in blue), given by the normal to the plane containing the ⇤
0
b direction

and the beam direction, is used to define the coordinate systems.

helicity frame, the amplitude for the ⇤ decay is

M⇤!pK�

�⇤
=

r
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2
h

⇤
�⇤,�p

(mpK)DJ⇤
�⇤,�p

(�p, ✓p, ��p)
⇤

. (15)

A spin-dependent factor is introduced to compensate for the normalisation of the Wigner D-matrix
elements.

The lepton system amplitude, h̃, is calculated in the helicity frame of the positively charged
lepton. After the rotation of the quantization axis from the lepton system helicity frame to the
`
+ helicity frame, the amplitude is

MV!`+`�

�V ,Oi
= h̃

Oi,�V
�1,�2

(q2)DJV
�V ,�1��2

(�`, ✓`, ��`)
⇤

. (16)

Note, that the spin of the virtual vector boson, JV , is implicitly contained in its polarization
�V = t, 0, ±.

Combining equations 14–16, with the results of Section 2,
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2
,

(17)

where ~⌦ = (cos ✓b, cos ✓p, �p, cos ✓`, �`). It is convenient to replace the sum over the ⇤
0
b helicities,

�b, by the spin-density matrix
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b
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b
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(18)
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Helicity amplitudes
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where P⇤0
b

is the ⇤
0
b polarisation defined in Equation (12) and the upper-left (lower-right) element

corresponds to ⇢+1/2,+1/2(⇢�1/2,�1/2) and the off-diagonal elements correspond to ⇢±1/2,⌥1/2.

3.1 Helicity amplitudes for the ⇤0
b ! ⇤V decay

Separate amplitudes need to be considered for hadronic operators with different Lorentz structures,
Oµ

had.,i = s̄�µ
i PL,Rb. The relevant amplitudes for this paper are

H⇤,7(0)
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(q2

, mpK) = �2mb
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2
e
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e
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⌘
, (19)

H⇤,10(0)

�⇤,�V
(q2

, mpK) =
C10(0)

2
e
i�⇤

⇣
H

⇤,V
�⇤,�V

⌥ H
⇤,A
�⇤,�V

⌘
.

The labels V , A, T and T5 refer to vector, axialvector, tensor and axialtensor currents with the
Lorentz structures �µ = �

µ, �
µ
�5, i�

µ⌫
q⌫ and i�

µ⌫
�5q⌫ , respectively. A common complex phase,

�⇤, arises from QCD separately for each ⇤ resonance. The amplitudes, H
⇤,�µ

�⇤,�V
, are

H
⇤,�µ

�⇤,�V
= "

⇤

µ(�V )h⇤|s̄�µ
b|⇤0

bi . (20)

Note, the polarization vectors for the vector-boson used in this paper are defined in the opposite
direction to those of Ref. [50].

The current h⇤|s̄�µ
b|⇤0

bi can be decomposed in terms of its underlying Lorentz structure.
One choice is to expand the currents in terms of �

µ and the ⇤
0
b and ⇤ 4-velocities, vp and vk.

This approach is taken in Ref. [46], where the currents for J⇤ = 1
2 are

h⇤|s̄�µ
b|⇤0

bi = ū(k, �⇤)
⇥
X�1(q

2)�µ + X�2(q
2)vµ

p + X�3(q
2)vµ

k

⇤
u(p, �b) , (21)

for J⇤ = 3
2 are
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k
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and for J⇤ = 5
2 are
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p

h
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2)�µ +X�2(q
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p + X�3(q
2)vµ

k

�

+X�4(q
2)g�µ

i
u(p, �b) .

(23)

In the notation of Ref. [46, 47], the form-factors X�i are XV i = Fi, XAi = Gi, XT i = F
T
i and

XT5i = G
T
i . Reference [46] provides predictions for these form factors for most ⇤

0
b ! ⇤ transitions

in a quark model. Predictions for some of the states are available from lattice QCD [33,41]. The
lattice predictions use an alternative expansion of the currents. A translation between the two
expansions is provided in Appendix D. For ⇤ states with J⇤ = 1

2 , the ⇤ spinors u(k, �⇤) are the
standard Dirac spinors. For ⇤ states with higher spin, the ⇤ spinors u↵(k, �⇤) and u↵�(k, �⇤)
are Rarita-Schwinger objects constructed from coupling an integer-spin tensor-object of order
J⇤ � 1

2 and a standard Dirac spinor [55]. This is described further in Appendix B.
The amplitudes in Equation 20 are calculated by evaluating the spinor products in Equa-

tions 21-23. The time-like (JV = 0 and �V = t) helicity amplitudes for natural parity states,
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bi = ū↵�(k, �⇤)v↵
p

h
v

�
p

�
X�1(q

2)�µ +X�2(q
2)vµ

p + X�3(q
2)vµ

k

�

+X�4(q
2)g�µ

i
u(p, �b) .

(23)

In the notation of Ref. [46, 47], the form-factors X�i are XV i = Fi, XAi = Gi, XT i = F
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i and

XT5i = G
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i . Reference [46] provides predictions for these form factors for most ⇤

0
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in a quark model. Predictions for some of the states are available from lattice QCD [33,41]. The
lattice predictions use an alternative expansion of the currents. A translation between the two
expansions is provided in Appendix D. For ⇤ states with J⇤ = 1

2 , the ⇤ spinors u(k, �⇤) are the
standard Dirac spinors. For ⇤ states with higher spin, the ⇤ spinors u↵(k, �⇤) and u↵�(k, �⇤)
are Rarita-Schwinger objects constructed from coupling an integer-spin tensor-object of order
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The labels V , A, T and T5 refer to vector, axialvector, tensor and axialtensor currents with the
Lorentz structures �µ = �

µ, �
µ
�5, i�

µ⌫
q⌫ and i�

µ⌫
�5q⌫ , respectively. A common complex phase,

�⇤, arises from QCD separately for each ⇤ resonance. The amplitudes, H
⇤,�µ

�⇤,�V
, are

H
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= "

⇤
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bi . (20)

Note, the polarization vectors for the vector-boson used in this paper are defined in the opposite
direction to those of Ref. [50].
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b|⇤0

bi can be decomposed in terms of its underlying Lorentz structure.
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µ and the ⇤
0
b and ⇤ 4-velocities, vp and vk.
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for J⇤ = 3
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and for J⇤ = 5
2 are
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In the notation of Ref. [46, 47], the form-factors X�i are XV i = Fi, XAi = Gi, XT i = F
T
i and

XT5i = G
T
i . Reference [46] provides predictions for these form factors for most ⇤

0
b ! ⇤ transitions

in a quark model. Predictions for some of the states are available from lattice QCD [33,41]. The
lattice predictions use an alternative expansion of the currents. A translation between the two
expansions is provided in Appendix D. For ⇤ states with J⇤ = 1

2 , the ⇤ spinors u(k, �⇤) are the
standard Dirac spinors. For ⇤ states with higher spin, the ⇤ spinors u↵(k, �⇤) and u↵�(k, �⇤)
are Rarita-Schwinger objects constructed from coupling an integer-spin tensor-object of order
J⇤ � 1

2 and a standard Dirac spinor [55]. This is described further in Appendix B.
The amplitudes in Equation 20 are calculated by evaluating the spinor products in Equa-

tions 21-23. The time-like (JV = 0 and �V = t) helicity amplitudes for natural parity states,
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Table 2: Amplitude combinations appearing in the coefficient Ki. The parity combination and allowed

spins indicate which states interfere. Checkmarks in the three columns labelled single states indicate

whether the coefficient appears in the single resonance case for spin J⇤ = 1
2 ,

3
2 , or

5
2 . Some coefficients

take the real part (Re) others the imaginary part (Im) of the amplitude products. A checkmark in the

column V/A shows that a coefficient arises from vector-axialvector interference. The right-most column

indicates the equation defining the observable Ki.

i
parity

J⇤ + J
0
⇤

single states
Re/Im V/A helicity combinations Eq.

combination 1/2 3/2 5/2

1 same � 1 X X X Re J⇤ = J
0
⇤, (�⇤, �V ) = (�⇤, �V )0

(62)

2 same � 1 X X X Re X J⇤ = J
0
⇤, �V 6= 0, (�⇤, �V ) = (�⇤, �V )0

(63)

3 same � 1 X X X Re J⇤ = J
0
⇤, (�⇤, �V ) = (�⇤, �V )0

(64)

4 opposite � 1 Re (�⇤, �V ) = (�⇤, �V )0
(66)

5 opposite � 1 Re X �V 6= 0, (�⇤, �V ) = (�⇤, �V )0
(117)

6 opposite � 1 Re (�⇤, �V ) = (�⇤, �V )0
(118)

7 same � 2 X X Re (�⇤, �V ) = (�⇤, �V )0
(119)

8 same � 2 X X Re X �V 6= 0, (�⇤, �V ) = (�⇤, �V )0
(120)

9 same � 2 X X Re (�⇤, �V ) = (�⇤, �V )0
(121)

10 opposite � 3 Re (�⇤, �V ) = (�⇤, �V )0
(122)

11 opposite � 3 Re X �V 6= 0, (�⇤, �V ) = (�⇤, �V )0
(123)

12 opposite � 3 Re (�⇤, �V ) = (�⇤, �V )0
(124)

13 same � 4 X Re (�⇤, �V ) = (�⇤, �V )0
(125)

14 same � 4 X Re X �V 6= 0, (�⇤, �V ) = (�⇤, �V )0
(126)

15 same � 4 X Re (�⇤, �V ) = (�⇤, �V )0
(127)

16 opposite � 5 Re (�⇤, �V ) = (�⇤, �V )0
(128)

17 opposite � 5 Re X �V 6= 0, (�⇤, �V ) = (�⇤, �V )0
(129)

18 opposite � 5 Re (�⇤, �V ) = (�⇤, �V )0
(130)

19 opposite � 1 Re

�V = 0, |�0
V | = 1 (all possible �

(0)
⇤ )

(131)

20 opposite � 1 Re X (132)

21 same � 2 X X Re (133)

22 same � 2 X X Re X (134)

23 opposite � 3 Re (135)

24 opposite � 3 Re X (136)

25 same � 4 X Re (137)

26 same � 4 X Re X (138)

27 opposite � 5 Re (139)

28 opposite � 5 Re X (140)

29 opposite � 1 Im

�V = 0, |�0
V | = 1 (all possible �

(0)
⇤ )

(141)

30 opposite � 1 Im X (142)

31 same � 2 X X Im (143)

32 same � 2 X X Im X (67)

33 opposite � 3 Im (144)

34 opposite � 3 Im X (145)

35 same � 4 X Im (146)

36 same � 4 X Im X (147)

37 opposite � 5 Im (148)

38 opposite � 5 Im X (149)

39 same � 2 X X Re

|�(0)
V | = 1, �⇤ = ±1/2, �

0
⇤ = ⌥3/2

(150)

40 opposite � 3 Re (151)

41 same � 4 X Re (152)

42 opposite � 5 Re (153)

43 same � 2 X X Im (154)

44 opposite � 3 Im (155)

45 same � 4 X Im (156)

46 opposite � 5 Im (157)
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6 Explicit expressions for the angular coefficients

The angular coefficients, Ki, involve bilinear combinations of amplitudes that arise from taking
the product of M and its complex conjugate. In what follows below, we label the indices
appearing in M† with primes. Allowing for even and odd parity as well as spins up to 5

2 results in
complex and long expressions. The structure of the different coefficients is summarised in Table 2.
The left-most columns of the table summarise the appearing state combinations, the right-most
columns give details about the structure of the coefficients and the interfering amplitudes. The
fifth column indicates whether the coefficient takes the real or imaginary part of the amplitude
product. A check mark in the sixth column indicates that the coefficient arises due to vector
and axialvector interference of the leptonic currents. The last column explains which helicity
combinations contribute to the coefficient. When a basis function is independent of �, the two
amplitudes in a product have the same helicity combination (�V = �

0

V , �⇤ = �
0

⇤). Basis functions
that depend on cos � or cos 2� (sin � or sin 2�) appear with the real (imaginary) part of a bilinear
combination of amplitudes.

In order to have a compact notation for the coefficients, the lepton-side helicity amplitudes,
h̃

JV
�1,�2

, are inserted under the assumption that 4m
2
` ⌧ q

2. The hadron-side helicity amplitudes
with negative proton helicity, h

⇤
�⇤,�1/2, are replaced using the parity conservation requirement

given in Equation (43). To further simplify the expressions we introduce the symbols

AQ,V
�⇤,�V

= N

X

⇤

X

i=7(0),9(0)

H⇤,Oi
�⇤,�V

h
⇤
�⇤,1/2 ,

AQ,A
�⇤,�V

= N

X

⇤

X

i=10(0)

H⇤,Oi
�⇤,�V

h
⇤
�⇤,1/2 ,

(60)

where the sum runs over resonances with the quantum numbers Q. The reader is reminded that
the indices need to satisfy |�V � �⇤| = |�0

V � �
0

⇤| = 1
2 to conserve helicity. The normalisation

coefficient

N =

s
N

2
1

m
2
⇤b

26(2⇡)7
|~k||~k1||~q1|p

q2
2q2 (61)

contains the phase-space factors, the normalisation of the weak b! s transition and a common
factor of 2q

2 stemming from the lepton-side amplitudes, h̃
JV
�1,�2

.
The coefficient K1 is proportional to the total decay rate and equals the sum of all helicity

amplitudes squared

K1 =
1p
3

X

Q

X

�⇤,�V

✓���AQ,V
�⇤,�V

���
2
+ V  ! A

◆
. (62)

The coefficient

K2 = �
X

Q

X

�=±1

� · Re

AQ,A⇤

3
2�,�

AQ,V
3
2�,�

+ AQ,A⇤

1
2�,�

AQ,V
1
2�,�

�
(63)

generates the lepton-side forward-backward asymmetry, A
`
FB = 3

2K2. The coefficient K3 is the
asymmetry in the amplitudes squared between the amplitudes with |�V | = 1 and �V = 0

K3 =
1

2
p

15

X

Q

X

�=±1

 ����A
Q,V
3
2�,�

����
2

+

����A
Q,V
1
2�,�

����
2

� 2

����A
Q,V
1
2�,0

����
2
!

+ V  ! A . (64)

A unique feature of K1–K3 is that they arise purely due to self-interaction terms and interference
between states with the same quantum numbers. As such, the first three coefficients are non-zero
even for single resonances regardless of their spin.
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and axialvector interference of the leptonic currents. The last column explains which helicity
combinations contribute to the coefficient. When a basis function is independent of �, the two
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where the sum runs over resonances with the quantum numbers Q. The reader is reminded that
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contains the phase-space factors, the normalisation of the weak b! s transition and a common
factor of 2q

2 stemming from the lepton-side amplitudes, h̃
JV
�1,�2

.
The coefficient K1 is proportional to the total decay rate and equals the sum of all helicity
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generates the lepton-side forward-backward asymmetry, A
`
FB = 3

2K2. The coefficient K3 is the
asymmetry in the amplitudes squared between the amplitudes with |�V | = 1 and �V = 0
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A unique feature of K1–K3 is that they arise purely due to self-interaction terms and interference
between states with the same quantum numbers. As such, the first three coefficients are non-zero
even for single resonances regardless of their spin.
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Due to parity conservation in the strong decay of the ⇤ resonance, the cos ✓p distribution
must be symmetric for spectra where all states have the same parity. Once states with different
parities can interfere, a hadron system forward-backward asymmetry is introduced with
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One of the three contributing coefficients is
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(66)

which accompanies the basis function f4(~⌦) = cos ✓p. Note that interference between 1
2 and

5
2 states does not contribute to K4 and many other observables (see Appendix F). Another
illustrative coefficient is
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(67)

This coefficient contains terms arising from interference between states with identical quantum
numbers and hence exists in the single-state case for J⇤ � 3

2 . However, unless the different
helicity amplitudes of the ⇤ have independent complex phases, the product of two amplitudes
of the same state is always real and K32 is zero. This is the case in naïve factorisation. Even
allowing for large phase differences, the magnitude of K32 will remain small for a single state due
to the relative suppression of the amplitudes with helicity |�⇤| = 3

2 compared to amplitudes with
|�⇤| = 1

2 . In a spectrum with several interfering resonances, the global QCD phase difference
between the states can lead to sizeable imaginary terms. Moreover, if there is interference
between states with different spins, terms with |�(0)

⇤ | = 1
2 appear, resulting in large values of

K32. The remaining angular coefficients in the unpolarised case are summarised in Appendix F.
The additional coefficients appearing in the polarised case are provided in a note book as
supplementary material.
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This coefficient contains terms arising from interference between states with identical quantum
numbers and hence exists in the single-state case for J⇤ � 3

2 . However, unless the different
helicity amplitudes of the ⇤ have independent complex phases, the product of two amplitudes
of the same state is always real and K32 is zero. This is the case in naïve factorisation. Even
allowing for large phase differences, the magnitude of K32 will remain small for a single state due
to the relative suppression of the amplitudes with helicity |�⇤| = 3

2 compared to amplitudes with
|�⇤| = 1

2 . In a spectrum with several interfering resonances, the global QCD phase difference
between the states can lead to sizeable imaginary terms. Moreover, if there is interference
between states with different spins, terms with |�(0)

⇤ | = 1
2 appear, resulting in large values of

K32. The remaining angular coefficients in the unpolarised case are summarised in Appendix F.
The additional coefficients appearing in the polarised case are provided in a note book as
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Wilson coefficients
➡ SM Wilson coefficients used in JHEP 05 

(2013) 137 
➡ Global fit from Eur. Phys. J. C 82 (2022) 326 
❖ Consistent with existing measurements in b➝sll 

20

Table 5: Wilson coefficients used in the generator assuming the SM [64] and a global fit to mesonic

b! s`
+
`
�

measurements [20].

Standard Model global fit

C1 �0.2632
C2 1.0111
C3 �0.0055
C4 �0.0806
C5 0.0004
C6 0.0009

C7 �0.3120 �0.3120
C9 4.0749 2.9949
C10 �4.3085 �4.1585

C70 0.0000 0.0000
C90 0.0000 0.1600
C100 0.0000 �0.1800

The spin-3
2 Rarita-Schwinger objects are constructed from the Dirac spinors, u(k, ±1

2), and spin-1
polarisation vectors for a massive particle as described in Ref. [55]. For J⇤ = 3

2 ,
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and for J⇤ = 5
2 ,
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where �⇤ is the ⇤ helicity and the spin-2 tensor is constructed from polarisation vectors as

e
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The Rarita-Schwinger objects satisfy

k
↵
u↵� = 0 , g

↵�
u↵� = 0 , (�µ

kµ � m)u↵� = 0 ,

�
↵
u↵� = 0 , u↵� = u�↵ .

(84)

In the ⇤
0
b rest frame, the four-momenta of the ⇤

0
b , the ⇤ resonance and the dilepton system are

p
µ = (m⇤b , 0, 0, 0) , k
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⇣
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, q
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. (85)

The polarisation vectors used to construct the Rarita-Schwinger objects for the ⇤ resonances are
given by

e
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, e
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