31st International Symposium on Lepton Photon Interactions at High Energies

Contribution ID: 228 Contribution code: P60

Type: Poster

A novel method to measure the relative strong phase between D^0 and \bar{D}^0 in the $K^0_S\pi^+\pi^-$ decay mode from correlated $\psi(3770) \to D^0\bar{D}^0$ decays, and an application to measuring the CKM angle γ in $B^\pm \to D(\to K^0_S\pi^+\pi^-)K^\pm$ decays.

Monday 17 July 2023 18:20 (1 minute)

We present a novel method that measures the relative strong phase, $\Delta\delta_D$, between D^0 and \bar{D}^0 amplitudes decaying to the $K_S^0\pi^+\pi^-$ final state measured from correlated $D\bar{D}$ pairs produced at the charm threshold, and its application to the measurement of CP violating observables in $B^\pm\to DK^\pm$ decays which includes the measurement of the CKM angle, γ , from $B^\pm\to D(\to K_S^0\pi^+\pi^-)K^\pm$ decays.

We test this method using simulated correlated $\psi(3770) \to D^0 \bar{D}^0$ decays with at least one D decaying to the $K_S^0 \pi^+ \pi^-$ final state and simulated $B^\pm \to D(\to K_S^0 \pi^+ \pi^-) K^\pm$ decays, we perform simultaneous fits to the correcting polynomial to $\Delta \delta_D$ and the CKM parameters, $x_\pm = r_B \cos{(\delta_B \pm \gamma)}$, $y_\pm = r_B \sin{(\delta_B \pm \gamma)}$. This method has better statistical precision than the binned measurement of γ using the binned measurements of $\Delta \delta_D$ from charm threshold data. We test the ability of our method against mis-modelling $\Delta \delta_D$ by performing pull studies with a predetermined bias applied to $\Delta \delta_D$, we show that our method is able to recover the original $\Delta \delta_D$ and avoid biasing the CKM parameters x_\pm, y_\pm in contrast to the unbinned model dependent measurement.

Author: LANE, Jake (Monash University (AU))

Presenter: LANE, Jake (Monash University (AU))

Session Classification: Reception and poster presentation

Track Classification: Flavour physics