Junctions and Baryons

School of Physics and Astronomy, Monash University

Javira Altmann

The Lund String Model

- Quantum Chromodynamics is represented by the **\$U(3)** gauge group with three colours (and anticolours): red, green and blue
- Confinement in QCD dictates that quarks and gluons are found in coloursinglet states:
 - · Colour-anticolour combination
 - · (anti)red + (anti)green + (anti)blue combination

What is a string?

- The colour confinement field modeled as a 1+1 dimensional flux tube with a constant tension (i.e. a string) as modelled in PYTHIA
- There are three different string topologies: dipole strings, gluon loops and junctions
 - Colour-neutral colour-anticolour strings:

The left topology is referred to as a dipole string, and the right is a gluon-loop configuration.

Colour-neutral **red**-green-blue string called a (anti)junction:

Junctions only included in Colour Reconnection (CR) model

Strangeness enhancement

• Recent data from ALICE shows an increase in strange hadrons with respect to charged multiplicity, in particular a **rise in strange baryons**.

Collective Effects

 Close-packing and rope hadronisation increases the string tension in more densely packed string environments → more likely to create heavier partons from string breaks → more strange!

Strange Junctions

- Confinement field around a junction is not necessarily the same as near endpoints or for dipole strings
- What if we allow for strangeness enhancement around junctions?
- → strangeness increase to be mostly for baryons
- May help reduce overprediction of proton-to-pion ratio
 - · Below shows early-stage preliminary results:

Hadronisation

- In high energy collisions like at the LHC, partons move apart from one another at high energies, stretching the string
- \bullet The **strings break** and create new quark-antiquark (or diquark-antidiquark) pairs \to **final state hadrons!**
- Can only make **light flavour quarks** (up, down and strange). Heavy flavours must come from hard processes

note that the colours here are illustrative to keep track of the initial qar q pair, and not meant to represent SU(3) colours

Baryon Production

• There are three ways to make baryons in the Lund String Model: diquark production, beam remnant diquarks (diquark endpoints), or junctions

Effect of Junctions

Baryon-to-meson ratios

- LEP-tuned diquark production rates underpredicts the **baryon-to-meson** ratio in pp collisions without junctions (Monash tune)
- Junctions increase total baryon-to-meson rate (CR Modes 0-3)

Left plot demonstrates increased baryon-to-meson ratio and right plot shows low p_{\perp} effects.

Low p_{\perp} heavy-flavour baryons

- ullet Default PYTHIA predicts high Λ_b asymmetry at low p_\perp due to heavy quarks (but not antiquarks) connecting with beam remnants
- ullet Junctions are more likely to form in denser string environments o **low** p_\perp
- Junctions and antijunctions formed in equal quantities
 diluting the asymmetry

Outlook

- Improving junction modelling, including special treatment of **soft endpoint** junction systems (i.e. usually low p_{\perp} heavy-flavour junctions)
- Combine effects of close-packing and strange junctions
- Reduce current pp collision overprediction of proton production. Model diquarks as successive colour fluctuations (popcorn mechanism), allowing fluctuations to connect with nearby strings \rightarrow reduce probability of forming diquarks \rightarrow reduce proton production