

Introduction

Charge-Parity violation as been well established in the **B** and **K** systems

Much more elusive in the charm sector

Standard Model: GIM cancellation and CKM suppression

$$A_{CP} \sim \mathcal{O}(10^{-3})$$

CP violation in charm observed for the first time in 2019

$$\Delta A_{CP} \equiv A_{CP}(D^0 \to K^+K^-) - A_{CP}(D^0 \to \pi^+\pi^-)$$
 [PRL 122 08726]

Introduction

Charge-Parity violation as been well established in the **B** and **K** systems

Much more elusive in the charm sector

Standard Model: GIM cancellation and CKM suppression

$$A_{CP} \sim \mathcal{O}(10^{-3})$$

CP violation in charm observed for the first time in 2019

$$\Delta A_{CP} \equiv A_{CP}(D^0 \to K^+K^-) - A_{CP}(D^0 \to \pi^+\pi^-)$$
 [PRL 122 08726]

Standard Model predictions are *hard*; there is still some debate as to whether the measured CPV is consistent with SM or not

More experimental measurements will help add clarity

Singly-Cabbibo suppressed decays offer a good avenue to look for CP violation in charm decays

Types of CP violation

Direct CP violation requires interference between two different decay processes

Difference in both weak phase and strong phase

$$|A|^2 - |\overline{A}|^2 \propto \sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2)$$

Neutral D mesons can also **mix** between particle and antiparticle states

$$|D_{1,2}\rangle \equiv p\,|D^0\rangle \pm q\,|\overline{D}^0\rangle \qquad \qquad \frac{q}{p} \neq 1 \rightarrow \text{CPV in mixing}$$

Types of CP violation

Direct CP violation requires **interference** between **two different** decay processes

Difference in both weak phase and strong phase

$$|A|^2 - |\overline{A}|^2 \propto \sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2)$$

Neutral D mesons can also **mix** between particle and antiparticle states

$$|D_{1,2}\rangle \equiv p\,|D^0\rangle \pm q\,|\overline{D}^0\rangle$$
 $\frac{q}{p}\neq 1 \rightarrow \text{CPV in mixing}$

$$\left| \frac{q}{p} \right| \neq 1 \rightarrow \text{CPV in mixing}$$

This results in more mechanisms for CP violation:

Direct CPV between $D \to f$ and $\overline{D} \to \overline{f}$

CPV in mixing between D and \overline{D}

Interference between mixing and decay

Charm at LHCb

LHCb has collected huge samples of charm decays

- ✓ Displaced vertex resolution Crucial for mixing
- ✓ Efficient hadron PID

Turbo trigger configuration allows exclusive reconstruction of many final states in real-time

Run 2: 1MHz $c\bar{c}$

Charm at LHCb

LHCb has collected huge samples of *charm decays*

- ✓ Displaced vertex resolution Crucial for mixing
- ✓ Efficient hadron PID

Turbo trigger configuration allows exclusive reconstruction of many final states in real-time

Run 2: 1MHz $c\bar{c}$

Measuring CP violation in charm decays requires precise control of nuisance asymmetries

Production asymmetries

Do we make as many c as \bar{c} ?

Detection asymmetries

Do we reconstruct antiparticles as well as particles?

Both are $\mathcal{O}(\%)$ effects

 \times 10 larger than A_{CP} Not perfect in simulations

Today's menu

LHCb-PAPER-2022-024 arXiv:2209.03179

Measurement of the time-integrated CP asymmetry in $D^0 o K^-K^+$ decays

LHCb-PAPER-2022-042 J. High Energ. Phys. 2023, 67 (2023)

Search for CP violation in $D_{(s)}^+ \to K^+K^-K^+$ decays

LHCb-PAPER-2023-005 arXiv:2306.12746

Search for CP violation in the phase space of $D^0 o \pi^-\pi^+\pi^0$ decays with the energy test

All performed with the Run 2 data samples

CP asymmetry in $D^0 \rightarrow K^-K^+$

Time-integrated CP asymmetry has been measured in $D^0 \to K^+K^-$ decays

$$A_{CP}(f) \approx \frac{a_f^d}{\tau_D} + \frac{\langle t \rangle_f}{\tau_D} \Delta Y_f$$

Contributions from both direct CP and mixing

CP asymmetry in $D^0 \rightarrow K^-K^+$

LHCb-PAPER-2022-024 arXiv:2209.03179

Time-integrated CP asymmetry has been measured in $D^0 \to K^+K^-$ decays

Direct Mixing

$$A_{CP}(f) pprox a_f^d + \frac{\langle t \rangle_f}{\tau_D} \Delta Y_f$$
 Contributions from both direct CP and mixing

Two methods are used to cancel the nuisance asymmetries using Cabbibo favoured decays Data-driven corrections

$$C_{D^+}$$

$$A_{CP}(D^{0} \to K^{+}K^{-}) = \\ +A(D^{*+} \to (D^{0} \to K^{+}K^{-})\pi_{tag}^{+}) \\ -A(D^{*+} \to (D^{0} \to K^{-}\pi^{+})\pi_{tag}^{+}) \\ +A(D^{+} \to K^{-}\pi^{+}\pi^{+}) \\ -A(D^{+} \to K_{S}^{0}\pi^{+}) \\ +A(K_{S}^{0})$$

$$C_{D_{\mathfrak{s}}^+}$$

$$A_{CP}(D^{0} \to K^{+}K^{-}) = \\ +A(D^{*+} \to (D^{0} \to K^{+}K^{-})\pi_{tag}^{+}) \\ -A(D^{*+} \to (D^{0} \to K^{-}\pi^{+})\pi_{tag}^{+}) \\ +A(D_{s}^{+} \to \phi\pi^{+}) \\ -A(D_{s}^{+} \to \overline{K}_{s}^{0}K^{+}) \\ +A(K_{s}^{0})$$

Control modes are reweighted to ensure complete cancellation

CP asymmetry in $D^0 \to K^-K^+$

Fits performed separately by year, magnet polarity and control method are combined:

$$\mathcal{A}_{CP}(K^-K^+) = [6.8 \pm 5.4 \,(\text{stat}) \pm 1.6 \,(\text{syst})] \times 10^{-4}$$

Combination is performed with other LHCb measurements

$$\Delta A_{CP} = A_{CP}(D^0 \to K^+K^-) - A_{CP}(D^0 \to \pi^+\pi^-) = (-15.4 \pm 2.9) \times 10^{-4}$$
 [PRL 122 08726]
$$\Delta Y = (-1.0 \pm 1.1 \pm 0.4) \times 10^{-4}$$
 [PRD 104 072010]

Mixing contribution is small

Fits performed separately by year, magnet polarity and control method are combined:

$$\mathcal{A}_{CP}(K^-K^+) = [6.8 \pm 5.4 \,(\text{stat}) \pm 1.6 \,(\text{syst})] \times 10^{-4}$$

Combination is performed with other LHCb measurements

$$\Delta A_{CP} = A_{CP}(D^0 \to K^+ K^-) - A_{CP}(D^0 \to \pi^+ \pi^-) = (-15.4 \pm 2.9) \times 10^{-4}$$
$$\Delta Y = (-1.0 \pm 1.1 \pm 0.4) \times 10^{-4}$$

[PRD 104 072010] 0.004

Mixing contribution is small

This allows the **direct asymmetries** to be extracted:

$$\begin{bmatrix} a_{K^-K^+}^d = (7.7 \pm 5.7) \times 10^{-4} \\ a_{\pi^-\pi^+}^d = (23.2 \pm 6.1) \times 10^{-4} \end{bmatrix} 1.4\sigma$$

$$3.8\sigma$$

First evidence of direct CP violation in a single charm decay mode!

Search for CP violation in $D_{(s)}^+ \to K^+K^-K^+$

LHCb-PAPER-2022-042
. High Energ. Phys. 2023, 67 (2023)

The rich **resonant structure** in multi-body decays can provide a source of **strong-phase variation** due to the many different contributing processes

CP violation can be locally enhanced within multi-body decays

This analysis uses a method that is constructed to only be sensitive to local CP violation

Insensitive to global nuisance and CP asymmetries

Search for CP violation in $D_{(s)}^+ \to K^+K^-K^+$

LHCb-PAPER-2022-042

J. High Energ. Phys. 2023, 67 (2023)

The rich **resonant structure** in multi-body decays can provide a source of **strong-phase variation** due to the many different contributing processes

CP violation can be locally enhanced within multi-body decays

This analysis uses a method that is constructed to only be sensitive to local CP violation

Insensitive to global nuisance and CP asymmetries

Large samples of Cabibbo suppressed $D_s^+ \to K^+K^-K^+$ and doubly-cabbibo suppressed $D^+ \to K^+K^-K^+$ decays are collected

This analysis uses a binned method previously [Phys.Rev.D 80 (2009) 096006] used for B meson decays [e.g. [arXiv:2206.07622]

Significance of normalised yield difference is calculated

$$S_{CP}^{i} = \frac{N_{+}^{i} - \alpha N_{-}^{i}}{\alpha^{2} \sqrt{[\sigma_{+}^{i}]^{2} + [\sigma_{-}^{i}]^{2}}} \qquad \alpha = \frac{\sum_{i=1}^{N_{+}^{i}} \sum_{j=1}^{N_{+}^{i}} \alpha^{2} \sqrt{[\sigma_{+}^{i}]^{2} + [\sigma_{-}^{i}]^{2}}}$$

Search for CP violation in $D_{(s)}^+ \to K^+K^-K^+$

LHCb-PAPER-2022-042

J. High Energ. Phys. 2023, 67 (2023)

The significance of $D_{(s)}^+$ vs. $D_{(s)}^-$ yield differences is studied in bins of the **Dalitz** plot

Binning scheme **optimised** to use many bins where strong phases vary **quickly**

e.g. around
$$D_{\scriptscriptstyle S}^+ o \phi K^+$$

 χ^2 test is performed to determine significance of local asymmetries with respect to CP conserving hypothesis

Cabbibo favoured decay $D_s^+ \to K^+ K^- \pi^+$ used to validate method

No evidence for CP violation in these decays

Search for CP violation in $D^0 \to \pi^- \pi^+ \pi^0$ decays

LHCb-PAPER-2023-005 arXiv:2306.12746

$$D^0\to\pi^-\pi^+\pi^0$$
 decays via similar quark-level processes to $D^0\to\pi^-\pi^+$

Promising area to search for CP violation

This analysis uses an **unbinned** method to search for localised CP asymmetries called **the energy test** [Phys. Rev. D 84, 054015 (2011)]

Search for CP violation in $D^0 \to \pi^- \pi^+ \pi^0$ decays

.HCb-PAPER-2023-005 arXiv:2306.12746

 $D^0\to\pi^-\pi^+\pi^0$ decays via similar quark-level processes to $D^0\to\pi^-\pi^+$

Promising area to search for CP violation

This analysis uses an **unbinned** method to search for localised CP asymmetries called **the energy test** [Phys. Rev. D 84, 054015 (2011)]

This analysis makes use of $\pi^0 \to \gamma\gamma$ decays

Depending on the energy, these are reconstructed as **one** or **two deposits** in the electromagnetic calorimeter

Merged: high momentum

Resolved: low momentum

Search for CP violation in $D^0 \to \pi^-\pi^+\pi^0$ decays

LHCb-PAPER-2023-005 arXiv:2306.12746

Distance between points in the phase space used to build the test statistic

$$T \equiv \boxed{\frac{1}{2n(n-1)}\sum_{i,j}\psi_{ij}} + \boxed{\frac{1}{2\bar{n}(\bar{n}-1)}\sum_{i,j}\psi_{ij}} - \boxed{\frac{1}{n\bar{n}}\sum_{i,j}\psi_{ij}}$$
 with D^0 - D^0 distances D^0 - D^0 distances D^0 - D^0 distances

Function ψ_{ij} is a Gaussian with width δ

 δ controls the local radius that is probed and is optimised to maximise sensitivity

Search for CP violation in $D^0 \to \pi^- \pi^+ \pi^0$ decays

LHCb-PAPER-2023-005 arXiv:2306.12746

Distance between points in the phase space used to build the test statistic

Function ψ_{ij} is a Gaussian with width δ

 δ controls the local radius that is probed and is optimised to maximise sensitivity

The **p-value** is computed by comparing T to a distribution of samples created by **randomly-permuting** the flavour assignment

Low p-value → sign of CP violation

Previous Run 1 analysis measured a p-value of 2.6%

[Phys. Lett. B740 (2015) 158]

$$p$$
-value = 62 %

No evidence for CP violation in this decay

0.25

0.50

-0.25

0.00

0.75

1.00

T-value

Conclusions and outlook

LHCb has performed new measurements and searches for CP violation in charm decays

First evidence of direct CP violation in a single charm decay mode

No evidence of localised CP asymmetries in $D^+_{(s)} o K^+K^-K^+$ and $D^0 o \pi^+\pi^-\pi^0$ decays

More analyses planned with the Run 2 data set

Run 3 has begun: expect larger samples with an upgraded detector!

Larger samples will help understand CP violation in charm

$Sample(\mathscr{L})$	Forecast $D^0 \to K^+K^-$ Yield	Actual Yield	Predicted sensitivity (%)	Actual sensitivity (%)	
Run 1-2 (9 fb^{-1})	52 M	70 M	0.07	0.056	
Run 1-3 (23fb^{-1})	$280\mathrm{M}$		0.03		
Run 1-4 (50fb^{-1})	1 B		0.015		
Run 1-5 (300 fb ⁻¹)	4.9 B		0.007		-

[LHCb-PUB-2018-009]

Back up

LHCb detector

Future prospects

[LHCb-PUB-2018-009]

Table 6.6: Extrapolated signal yields, in units of 10^6 , of the Cabibbo-suppressed decays $D^+ \to K^-K^+\pi^+$, $D^+ \to \pi^-\pi^+\pi^+$, and of the doubly Cabibbo-suppressed decays $D^+ \to K^-K^+K^+$, $D^+ \to \pi^-K^+\pi^+$.

Sample (\mathcal{L})	$D^+ o K^-K^+\pi^+$	$D^+ \to \pi^- \pi^+ \pi^+$	$D^+ o K^-K^+K^+$	$D^+ \to \pi^- K^+ \pi^+$
Run 1–2 (9fb^{-1})	200	100	14	8
Run 1–4 (23fb^{-1})	1,000	500	70	40
Run 1–4 (50fb^{-1})	$2,\!600$	1,300	182	104
Run 1–6 (300fb^{-1})	$17,\!420$	8,710	1,219	697

Table 6.7: Sensitivities to CP-violation scenarios for $D^+ \to \pi^- \pi^+ \pi^+$ decays. Simulated D^+ and D^- Dalitz plots are generated with relative changes in the phase of the $R\pi^{\pm}$ amplitude, $R = \rho^0(770)$, $f_0(500)$ or $f_2(1270)$. The values of the phase differences are given in degrees and correspond to a 5σ CP-violation effect. Simulations are performed with $3 \, \text{fb}^{-1}$ and extrapolated to the expected integrated luminosities.

resonant channel	$9\mathrm{fb}^{-1}$	$23\mathrm{fb}^{-1}$	$50\mathrm{fb}^{-1}$	$300{\rm fb}^{-1}$
$f_0(500)\pi$	0.30	0.13	0.083	0.032
$ ho^{0}(770\pi$	0.50	0.22	0.14	0.054
$f_2(1270)\pi$	1.0	0.45	0.28	0.11