Heavy flavour production and spectroscopy at LHCb

Lepton Photon 2023

Yixiong Zhou (UCAS)

on behalf of the LHCb Collaboration

July 18, 2023

1 LHCb experiment

2 Heavy flavour spectroscopy

- Observation of new Ω⁰_c states
- Observation of new Ξ_b^0 states
- Mass and production measurement of Ω_b^- and Ξ_b^-

3 Heavy flavour production

- Measurement of *Y*(*nS*) production
- Associated production of prompt J/ψ and Υ mesons

Summary

4

LHCb experiment

- A huge amount of b, c have been produced
 - $\sigma(pp \rightarrow c\overline{c}) \approx 35 \,\mathrm{mb} @\sqrt{\mathrm{s}} = 13 \,\mathrm{TeV}$
 - $\sigma(pp \rightarrow b\overline{b}) \approx 0.5 \,\mathrm{mb} @\sqrt{\mathrm{s}} = 13 \,\mathrm{TeV}$
 - Collected 9 fb $^{-1}$ of data at 7, 8 and 13 $\,{\rm TeV}$
- Excellent vertex and PID performance and precise tracking resolution
- Ideal place for spectroscopy study

JINST 3 (2008) S08005, Int.J.Mod.Phys.A 30 (2015) 07,1530022

© Yixiong Zhou (UCAS)

• 72 new hadrons discovered by LHC, 64 from LHCb

End of Run2

- 5 new narrow states observed by LHCb in 2017 with its decays to $\Xi_c^+ K^-$
 - Broad structure was seen around 3188 $\,{\rm MeV}$ mass region
- 4 of them confirmed by Belle

New excited $\Omega_c^0 \to \Xi_c^+ K^-$ states

- Use full Run1+Run2 data [9 fb⁻¹]
- All previous states confirmed with improved masses and widths precision
- Two new states (near \(\exists D\) and \(\exists D^*\) thresholds)
 - $\Omega_c(3185)^0, \Omega_c(3327)^0$

	Resonance	m (MeV)	Γ (MeV)
	$\Omega_{c}(3000)^{0}$	$3000.44 \pm 0.07 + 0.07 + 0.07 \pm 0.23$	$3.83 \pm 0.23 \stackrel{+1.59}{_{-0.29}}$
	$\Omega_{c}(3050)^{0}$	$3050.18 \pm 0.04 + 0.06 \pm 0.23$	$0.67 \pm 0.17 \stackrel{+0.64}{_{-0.72}}$
			< 1.8 MeV, 95% C.L.
	$\Omega_{c}(3065)^{0}$	$3065.63 \pm 0.06 \ ^{+0.06}_{-0.06} \pm 0.23$	$3.79 \pm 0.20 + 0.38 \\ -0.47$
	$\Omega_{c}(3090)^{0}$	$3090.16 \pm 0.11 \stackrel{+0.06}{_{-0.10}} \pm 0.23$	$8.48 \pm 0.44 \ ^{+0.61}_{-1.62}$
	$\Omega_{c}(3119)^{0}$	$3118.98 \pm 0.12 \ ^{+0.09}_{-0.23} \pm 0.23$	$0.60 \pm 0.63 \substack{+0.90 \\ -1.05}$
			< 2.5 MeV, 95% C.L.
014/	$\Omega_{c}(3185)^{0}$	$3185.1 \pm 1.7 + 7.4 = 0.2$	$50 \pm 7 + 10 - 20$
	$\Omega_{c}(3327)^{0}$	$3327.1 \pm 1.2 \ _{-1.3}^{+0.1} \pm 0.2$	$20 \pm 5 {}^{+13}_{-1}$

Excited Ξ_b^- states

- $\Xi_b(6100)^-$ observed by CMS in $m(\Xi_b^-\pi^+\pi^-)$ PRL 126 (2021) 252003
- Two channels used to reconstruct Ξ_b^-
 - Mass: $M(\Xi_b(6100)^-) = 6100.3 \pm 0.2 \, (\text{stat}) \pm 0.1 \, (\text{syst}) \pm 0.6 \, (\Xi_b^-) \, \text{MeV}$
 - Width : $\Gamma(\Xi_b(6100)^-) < 1.9\,\mathrm{MeV@CL95\%}$

New excited Ξ_h^0 states

Ν

- Search for new $\Xi_b^{**-/0}$ states in
 - $m(\Xi_b^{-/0}\pi^+\pi^-)$ with Run1+Run2 data
 - $\equiv_b^{-/0} \rightarrow \equiv_c^{0/+} \pi^-$ and $\equiv_c^{0/+} \pi^- \pi^+ \pi^-$ (max. 9 tracks!)
- Two new states observed
 - $\equiv_b (6087)^0 \to \equiv_b^{\prime-} (\to \equiv_b^0 \pi^-) \pi^+$
 - $\Xi_b(6095)^0 \to \Xi_b^{*-} (\to \Xi_b^0 \pi^-) \pi^+$
- One state observed by CMS is confirmed

•
$$\Xi_b(6100)^- \to \Xi_b^{*0} (\to \Xi_b^- \pi^+) \pi^-$$

• Best measurement on known $\Xi_b^{'-}$ and Ξ_b^{*-} states

	Value [MeV]		
	$Q_0 [\Xi_b(6100)^-]$	$23.60 \pm 0.11 \pm 0.02$	
	$\Gamma [\Xi_b(6100)^-]$	$0.94 \pm 0.30 \pm 0.08$	
	$m_0 [\Xi_b(6100)^-]$	$6099.74 \pm 0.11 \pm 0.02 \ \pm 0.6 \ (\varXi_b)$	
	$Q_0 [\Xi_b (6087)^0]$	$16.20 \pm 0.20 \pm 0.06$	
	$\Gamma [\Xi_b(6087)^0]$	$2.43 \pm 0.51 \pm 0.10$	
0147	$m_0 [\Xi_b (6087)^0]$	$6087.24 \pm 0.20 \pm 0.06 \pm 0.5 (\Xi_b^0)$	
CVV	$Q_0 [\Xi_b(6095)^0]$	$24.32 \pm 0.15 \pm 0.03$	
	$\Gamma [\Xi_{b}(6095)^{0}]$	$0.50 \pm 0.33 \pm 0.11$	
	$m_0 [\Xi_b (6095)^0]$	$6095.36 \pm 0.15 \pm 0.03 \ \pm 0.5 \ (\varXi_b^0)$	

Mass and production measurement of Ω_b^- and $\Xi_b^-{}_{arXiv:2305.15329}$

Measurement the mass difference and production ratio with full Run1+Run2 data

•
$$m(\Omega_b^-) - m(\Xi_b^-) = 248.54 \pm 0.51 \,(\text{stat}) \pm 0.38 \,(\text{syst}) \,\text{MeV}/c^2$$

•
$$\frac{I_{\Omega_b^-}}{f_{\Xi_-^-}} \times \frac{\mathcal{B}(\Omega_b^- \to J/\psi \, \Omega^-)}{\mathcal{B}(\Xi_b^- \to J/\psi \, \Xi^-)} = 0.120 \pm 0.008 \, (\text{stat}) \pm 0.008 \, (\text{syst})$$

Quarkonium production

<u>tucp</u>

- Factoriza in two scales of production
 - Quark pair formation : Short distance, perturbative
 - Hadronization : Long distance, non-perturbative
- Various of theoretical approaches non has successfully described all experimental observables
 - Color singlet model (CSM) : Difficult to predict production cross-sections at high energies
 - Non-relavitistic QCD (NRQCD) : Relies heavily on the universality of non-perturbative long-distance matrix elements (LDMEs)
- Critical need for experimental input that can advance the understanding of quarkonium production and its applications

Measurement of $\Upsilon(nS)$ production

- Use 2015 pp collision data at $\sqrt{s} = 5 \,\mathrm{TeV} \,$ [9.1 pb⁻¹]
- With $\Upsilon(nS) \rightarrow \mu^+ \mu^-$ decay
- Measurement the double-differential cross-section in kinematic range of $0 < p_{\rm T} < 20~{\rm GeV}/c, 2 < y < 4.5$

$$\mathcal{B}(\Upsilon(nS) o \mu^+ \mu^-) imes rac{\mathrm{d}^2 \sigma}{\mathrm{d} p_T \mathrm{d} y} = rac{\mathcal{N}(\Upsilon(nS) o \mu^+ \mu^-)}{\mathcal{L} imes arepsilon_{\mathrm{tot}} imes \Delta p_T imes \Delta y},$$

- Result of integrated cross-sections of $\Upsilon(nS)$ with improved precision (factor of two)
 - $\begin{array}{lll} \sigma(\Upsilon(1S)) \times \mathcal{B}(\Upsilon(1S) \to \mu^+ \mu^-) &=& 2101 \pm 33 \pm 83 \, \mathrm{pb} \\ \sigma(\Upsilon(2S)) \times \mathcal{B}(\Upsilon(2S) \to \mu^+ \mu^-) &=& 526 \pm 20 \pm 21 \, \mathrm{pb} \\ \sigma(\Upsilon(3S)) \times \mathcal{B}(\Upsilon(3S) \to \mu^+ \mu^-) &=& 242 \pm 16 \pm 10 \, \mathrm{pb} \end{array}$
- + $\varUpsilon(1S)$ cross-section as function of $p_{\rm T}$ well describe by NRQCD ($p_{\rm T}>5\,{\rm GeV}/c)$

- Two production mechanism : Single parton scattering (SPS), Double parton scattering (DPS)
 - SPS: test various of production models
 - DPS: test the "pocket formula" Phys. Rev. D57 (1998) 503
 - assume no correlations between two partons and transverse and longitudinal components are factorisable

$$\sigma_{DPS}^{pp \to AB} = \frac{m}{2} \frac{\sigma_{SPS}^{pp \to A} \sigma_{SPS}^{pp \to B}}{\sigma_{eff, DPS}}$$

Associated production of prompt J/ ψ and Υ arXiv:2305.15580

- Use 2016-2018 pp collision data at $\sqrt{s} = 13 \text{ TeV} [4.2 \text{ fb}^{-1}]$
- With $\Upsilon(nS) \rightarrow \mu^+ \mu^-$ and $J/\psi \rightarrow \mu^+ \mu^-$ decay
- Measure production in kinematic range:
 - 2 < y < 4.5
 - $0 < p_{\rm T}(J/\psi) < 10 \, {\rm GeV/c}$
 - $0 < p_{\mathrm{T}}(\Upsilon) < 30 \,\mathrm{GeV}/c$
- 2D fit on J/ ψ Υ mass distribution to extract the signal yields
- Significance:
 - $J/\psi \Upsilon(1S)$: 7.9 σ
 - $J/\psi \Upsilon(2S)$: 4.9 σ

- Cross-section:
 - $\sigma(J/\psi \Upsilon(1S)) =$ 133 ± 22 (stat) ± 7 (syst) ± 3(\mathcal{B}) pb
 - $\sigma(J/\psi \Upsilon(2S)) =$ 76 ± 21 (stat) ± 4 (syst) ± 7(\mathcal{B}) pb

•
$$\sigma_{\text{eff}}(J/\psi - \Upsilon) = \frac{\sigma(J/\psi)\sigma(\Upsilon)}{\sigma_{DPS}(J/\psi - \Upsilon)}$$

- Substract the SPS contribution based on NRQCD to get σ_{DPS} Phys. Rev. Lett. 117 (2016) 062001
 - $\sigma_{SPS}(J/\psi \Upsilon(1S)) = 20^{+52}_{-15} \, \mathrm{pb}$

•
$$\sigma_{SPS}(J/\psi - \Upsilon(2S)) = 8^{+22}_{-6} \, \mathrm{pb}$$

- $\sigma_{\text{eff}}(J/\psi \Upsilon(1S)) =$ 26 ± 5 (stat) ± 2 (syst)⁺²²₋₃(th.) mb
- $\sigma_{eff}(J/\psi \Upsilon(2S)) =$ 14 ± 5 (stat) ± 1 (syst)⁺⁷₋₁(th.)
- $\sigma_{\rm eff}$ compatible with measurements using hadroproduction of other particle

New LHCb results	pp@13 TeV
	LHCb $(J/\psi - \Upsilon(1S))$
	LHCb $(J/\psi - \Upsilon(2S))$
-	LHCb $(J/\psi - J/\psi)$
	pp@8 TeV
	ATLAS $(J/\psi - Z^0)$
	ATLAS $(J/\psi - J/\psi)$
	LHCb ($\Upsilon(1S)-D^0$)
	pp@7 TeV
	ATLAS $(J/\psi - W^{\pm})$
03820	CMS $(J/\psi - J/\psi)$
	LHCb $(J/\psi - D^0)$
	LHCb (D^0-D^0)
	ATLAS (W [±] -2 jets)
	CMS (W [±] -2 jets)
	pp@1.96 TeV
•	D0 $(J/\psi - I^*)$
	D0 $(J/\psi - J/\psi)$
	D0 (γ-3 jets)
	pp@1.8 TeV
	CDF (4 jets)
· · · · · · · · · · · · · · · · · · ·	CDF (γ-3 jets)
0 20 40	60 80 10
	$\sigma_{_{eff}}$ [mb]

Summary

- A lot of important results in heavy flavor sector:
 - First observation of two new excited Ω_c^0 states near $\equiv D$ and $\equiv D^*$ thresholds
 - First observation of $\Xi_b (6087)^0$ and $\Xi_b (6095)^0$
 - Most precise measurement of mass difference and production ratio of Ω_b^- and Ξ_b^-
 - Cross-sections of Υ mesons measured with improved precision
 - First measurement of prompt J/ $\psi \Upsilon$ associated production, effective cross-section was found compatible with other hadroproduction measurements
- Run3 approaching $\int \mathcal{L}dt = 23 \text{ fb}^{-1}$ (3 times more)
- More results are expected in the near future

Thanks!