

Searches for new physics in CMS in events with jets, leptons and photons in the final state

31st Lepton Photon Conference Ν MELBOURNE CONVENTION Ο & EXHIBITION CENTRE Ν 17 - 21 JULY ω

Andrew Hart (Rutgers University)
on behalf of the CMS Collaboration

Standard model: success and shortcomings

- ➤ The standard model (SM) of particle physics has been extremely successful over its "five decades:
 - With the discovery of the Higgs boson in 2012 by CMS and ATLAS, all predicted particles have been observed!
- Not a complete theory though!
 - No gravity, dark matter, or dark energy
 - Somewhat inelegant
 - Electroweak hierarchy problem
 - Strong CP problem
 - 19 ad hoc constants that have to be measured experimentally
 - Some tensions with experiments
 - Anomalous magnetic dipole moment of the muon
 - W boson mass
 - **..**

Standard Model of Elementary Particles

Beyond the SM

- Huge variety of models for beyond the SM (BSM) physics proposed to address shortcomings:
 - Huge variety already explored at the LHC!
- In this talk, we will see some of the most recent searches from CMS in events with jets, leptons, and photons in the final state:
 - All results from Run 2 data:
 - 138 fb⁻¹ @ \sqrt{s} = 13 TeV
- Overlaps with other talks at LP:
 - See <u>talk by M. Chen</u> for more direct searches for BSM resonances
 - See <u>talk by V. Sharma</u> for searches for dark matter in CMS
 - See <u>talk by D. Diaz</u> for searches for long-lived particles in CMS
 - See <u>talk by B. Kilminster</u> for searches for leptoquarks in CMS

Click here to zoom in

Nonresonant searches

τ lepton + missing momentum

- Search for events with a hadronically decaying τ lepton (τ_h) and high missing transverse momentum (p_{τ}^{miss})
- Benchmark model:
 - Heavy charged vector boson W' → τν

Strategy:

- Trigger requires at least one τ_h or high p_{τ}^{miss}
- $\hspace{1cm} \circ \hspace{1cm} \text{Offline, hadronically decaying τ identified} \\ \text{with DeepTau ID}$
 - $p_T > 190 \text{ GeV (130 GeV in 2016)}$
- \circ p_T miss > 200 GeV
- Transverse mass (m_T) used as discriminating variable

τ lepton + missing momentum

- Data agree well with estimated backgrounds
- Limits placed on coupling ratio of W' and W $(g_{W'}/g_{W})$ versus $m_{W'}$:
 - W' up to 4.8 TeV excluded in sequential SM (SSM) $(g_{wr} = g_w)$

Results also interpreted within several other models!

Composite Majorana neutrino

- Composite fermions are one possibility for BSM physics
- \rightarrow N₁ = excited neutrino state:
 - Both contact and gauge interactions with ground states
 - Search for events with two same-flavor leptons and a large-radius jet
- Strategy:
 - Events pass single-e or single-μ triggers
 - Two high-p_T leptons of same flavor required offline
 - Leading (subleading) $p_T > 150$ (100) GeV
 - Invariant mass > 300 GeV
 - Large-radius jet (J) with p_{τ} > 190 GeV
 - o m(IIJ) used as discriminating variable
 - Peaks at $m(IIJ) \ge m(N_1)$

Composite Majorana neutrino

- Background estimates taken from simulation:
 - Shape for Drell-Yan corrected using data-driven scale factors
 - Drell-Yan and top quark control regions included in fit to data to constrain these backgrounds

No significant excess observed in data

- For masses equal to compositeness scale (Λ), N_e (N_{μ}) excluded up to 6.0 (6.1) TeV
 - Improves limit on this class of resonances by more than 1 TeV!

Resonant searches ("bump hunts")

γ-jet resonance

- Search for resonances in γ-jet final state
- Two models explored:
 - Excited states of light quarks
 (q*) or heavy flavor quarks (b*)

Quantum black holes (QBH)

- Strategy:
 - Events collected with single-photon triggers
 - Offline, γ with $p_{\tau} > 240$ GeV required
 - Wide jet with $p_{\tau} > 170$ GeV required
 - Narrow jets within ΔR < 1.1 clustered together

Invariant mass of highest- p_T γ and highest- p_T jet (m_{v+iet}) used as

discriminating variable

γ-jet resonance

- Results consistent with expected background
- Limits placed on excited quark models and two varieties of QBM models

GeV-scale dimuon resonance

- Search for low mass resonances decaying to two oppositely charged muons:
 - Could act as a portal between SM fields and an unknown dark sector
- Strategy:
 - Unique trigger strategy!
 - High-rate "scouting" triggers
 - Trigger requires two muons with $p_{\tau} > 3 \text{ GeV}$
 - Much lower p_{τ} than more conventional triggers
 - Two prompt, oppositely charged muons required offline
 - MVA used to select well-reconstructed muons
 - Dimuon invariant mass used as discriminating variable

data efficiency for high-rate "scouting" triggers

Some trigger seeds require small separation between muons

MVA trained on J/ψ (Y(1S)) for lower (higher) masses

GeV-scale dimuon resonance

- High-p_T selection targets pseudoscalars produced via gluon fusion:
 - \circ p_{Tµµ} > 35 (20) GeV in lower (higher) mass regions
- Excess observed in high-p_T selection at 2.41 GeV:
 - \circ Local (global) significance of 3.2 (1.3) σ
 - Coincides with 3.1-σ excess observed by LHCb in comparable analysis

- Search for dilepton (pseudo)scalar resonance (φ) produced with a W, Z, or top quark pair:
 - W/Z decays to charged leptons
 - At least one top quark decays leptonically

- Strategy:
 - Events collected with single-electron or single-muon triggers
 - Seven channels:
 - 4 leptons: 1–4 light leptons, 0–3 τ_h
 - 3 leptons: 1–3 light leptons, 0–2 τ_h
 - Same-flavor dilepton mass used as discriminating variable
- > Two types of background:
 - o Prompt leptons and leptons from conversions:
 - Mostly from WZ, ZZ, Zy, ttZ
 - Estimated from simulation
 - Normalized and corrected in dedicated control regions
 - Fake leptons:
 - Fake rate estimated from lepton isolation sidebands in data

- Separate signal regions above and below Z mass
 - 36 signal regions defined depending on production and decay modes
- No statistically significant deviation from background observed
- Largest excess in high-mass Zφ(ee) region at 156 GeV:
 - \circ Local (global) significance of 2.9 (1.4) σ
- Limits set on scalar, pseudoscalar, and Higgs-like signal models

- Separate signal regions above and below Z mass
 - 36 signal regions defined depending on production and decay modes
- No statistically significant deviation from background observed
- Largest excess in high-mass Zφ(ee) region at 156 GeV:
 - \circ Local (global) significance of 2.9 (1.4) σ
- Limits set on scalar, pseudoscalar, and Higgs-like signal models

- Separate signal regions above and below Z mass
 - 36 signal regions defined depending on production and decay modes
- No statistically significant deviation from background observed
- Largest excess in high-mass Zφ(ee) region at 156 GeV:
 - \circ Local (global) significance of 2.9 (1.4) σ
- Limits set on scalar, pseudoscalar, and Higgs-like signal models

- Separate signal regions above and below Z mass
 - 36 signal regions defined depending on production and decay modes
- No statistically significant deviation from background observed
- Largest excess in high-mass Zφ(ee) region at 156 GeV:
 - Local (global) significance of 2.9 (1.4) σ
- Limits set on scalar, pseudoscalar, and Higgs-like signal models

- Separate signal regions above and below Z mass
 - 36 signal regions defined depending on production and decay modes
- No statistically significant deviation from background observed
- Largest excess in high-mass Zφ(ee) region at 156 GeV:
 - \circ Local (global) significance of 2.9 (1.4) σ
- ➤ Limits set on scalar, pseudoscalar, and Higgs-like signal models

Conclusion

- CMS has a broad program searching for BSM physics in whatever form it may take
- Here we have seen a selection of recent results from searches in events with jets, leptons, and photons in the final state:
 - No statistically significant excesses seen... yet!
 - Most searches here are statistically limited, especially at higher masses
 - Sensitivity will improve quickly with more data
- Currently in Run 3:
 - $^{\circ}$ $^{\circ}$ 65 fb⁻¹ so far @ \sqrt{s} = 13.6 TeV
 - Even more data are being recorded and analyzed now
 - Stay tuned for new and updated results... and hopefully discoveries!