Measurement of multiboson production at ATLAS

Walter Hopkins

On behalf of the ATLAS Collaboration

Lepton-Photon 2023

Melbourne, Australia

1

July 18 2023

MULTIBOSON MEASUREMENTS

- Multiboson measurements test Standard Model (SM) Electro-weak (EW) self couplings
- Sensitive to Beyond the Standard Model (BSM) physics through anomalous triple and quartic gauge couplings (aQGC and aTGC) in Effective Field Theory (EFT) framework

Results covered

- $Z(\rightarrow \ell \ell)\gamma\gamma$
- $W(\rightarrow \ell \nu)\gamma\gamma$
- $W(\rightarrow \ell \nu)Z(\rightarrow \ell \ell)\gamma$
- $W(\rightarrow e\nu)W(\rightarrow \mu\nu)+0$ jets
- $Z(\rightarrow \ell \ell)Z(\rightarrow \ell \ell)$ polarization

Throughout this presentation: ℓ =electron or muon, full Run 2 data (140 fb⁻¹) at 13 TeV used

 $Z(\rightarrow \ell \ell)\gamma\gamma$ **PRODUCTION**

Initial State Radiation Photons

Anomalous Couplings (aQGC)

ISR rejection

Eur. Phys. J. C 83 (2023) 539

- Fiducial and unfolded cross section measurement.
- Photons from final state radiation (FSR) removed
 - By considering the invariant mass of lepton pair and each photon
- Differential cross section measurement in $p_T^{\ell\ell}$ used to constrain dimension-8 Wilson coefficient in EFT framework
- Main background:
 - Non-prompt photons: data-driven matrix method for $Z\gamma\gamma$, $Z\gamma j, Zj\gamma, Zjj$ normalization
 - $t\bar{t}\gamma\gamma$: normalized with $e\mu$ (non-same flavor) control region
- Uncertainties: stats limited (12% uncertainty) but non-prompt photon background is dominant systematic (8%)

$Z\gamma\gamma \, \text{PRODUCTION: RESULTS}$

Differential $p_T^{\ell\ell}\,$ cross section

Effective Field Theory (aQGC) interpretation

Total cross section

Fidicual cross section measurement with 12% uncertainty

 $W(\rightarrow \ell \nu)\gamma\gamma$ PRODUCTION

Photons from W

Photons from H

ATLAS-CONF-2023-005

• Total cross section measurement

• Photons from ISR, FSR, and W are signal

• Leptonic τ decays are also considered signal

• Main background:

• Non-prompt γ/ℓ and e reco as γ : Various data-driven methods

• $t\bar{t}\gamma$: normalized with control region which requires b-tagged jets

• Systematics dominated (13%) from data-driven background estimates

Background estimation strategy for $t\bar{t}\gamma$

$W\gamma\gamma$ production: results

Source	\mathbf{SR}	TopCR
$W\gamma\gamma$	410 ± 60	28 ± 5
Non-prompt $j \to \gamma$	420 ± 50	42 ± 20
Misidentified $e \to \gamma$	155 ± 11	120 ± 9
Multiboson $(WH(\gamma\gamma), WW\gamma, Z\gamma\gamma)$	76 ± 13	5.2 ± 1.7
Non-prompt $j \to \ell$	35 ± 10	_
Top $(tt\gamma, tW\gamma, tq\gamma)$	30 ± 7	136 ± 32
Pileup	10 ± 5	_
Total	1136 ± 34	332 ± 18
Data	1136	333

FIRST OBSERVATION OF $W \rightarrow \ell \nu \gamma \gamma$ (5.6 σ OBSERVED AND EXPECTED)!

$W(\rightarrow \ell \nu)Z(\rightarrow \ell \ell)\gamma PRODUCTION$

- Measurement total cross section of $WZ\gamma$ production
- $WZ\gamma$ has not yet been observed
- Suppress FSR by only considering $m_{\ell\ell}$ >81 GeV and $\Delta R(\ell, \gamma)$ >0.1
- Leptons/photon not allowed to come from taus
- Main background:
 - Non-prompt γ/ℓ : data-driven methods
 - ZZ and ZZ γ : normalized with control region which requires b-tagged jets
- Stat limited (15% uncertainty) with dominant systematic from datadriven background estimates (but also from data stats in loose lepton/photon region)

Data-driven background estimation

$WZ\gamma \text{ production: results}$

Process	SR	$ZZ\gamma$ CR	$ZZ(e \to \gamma)$ CR
$WZ\gamma$	92 ± 15	$0.21 \hspace{.1in} \pm 0.07$	0.56 ± 0.14
$ZZ\gamma$	10.7 ± 2.3	23 ± 5	1.8 ± 0.4
$ZZ(e \rightarrow \gamma)$	$3.0~\pm~0.6$	0.028 ± 0.020	30 ± 6
$Z\gamma\gamma$	$1.05\pm~0.32$	0.15 ± 0.06	0.29 ± 0.10
Nonprompt background	30 ± 6	-	-
Pileup γ	$1.9~\pm~0.7$	-	-
Total yield	139 ± 12	23 ± 5	33 ± 6
Data	139	23	33

$WZ\gamma$ observed with 6.3 σ (5.0 σ expected)

Measured cross section: 1.99 ± 0.34 fb

Predicted cross section: 1.49 ± 0.07 fb (within 1.5 σ)

- Fiducial and differential measurement
 - Fully jet-inclusive signal region (no requirement on jet) multiplicity): reduces QCD and experimental uncertainties
 - Dynamic jet veto signal region: reduces QCD-EW uncertainties but increases top modeling and jet energy scale uncertainties
- Major backgrounds: tt and non-prompt fake leptons
- Systematics limited (3%): Top modeling (1.6%) and fake lepton background (1.5%) in both channels (inclusive and veto). Veto SR also has jet calibration as major uncertainty

Uncertainties vs m_{eu}

WW+0 JETS PRODUCTION: RESULTS

First use of fully jet-inclusive phase space

Most precise WW cross section measurement in hadron-hadron collisions: 3.1% uncertainty vs 6-7% from previous measurements

$Z(\rightarrow \ell \ell) Z(\rightarrow \ell \ell) \text{ POLARIZATION}$

- Search for CP-violation in on-shell $ZZ \twoheadrightarrow 4\ell$ events
 - 2 angular observables ($T_{yz,1}$, $T_{yz,3}$) combined into $O_{T_{yz,1},T_{yz,3}}$
- $\bullet~ZZ$ polarization measurement using BDT
 - Longitudinal-Longitudinal (LL) signal vs Transverse-Longitudinal (TL) and Transverse-Tranverse (TT) Z polization background
- Dominant background: fake leptons, data-driven method
- Statistics limited (~25%) with ~10% systematic

CP sensitive angular variables for SM

ATLAS-CONF-2023-038

${\sf BDT} \ {\sf output} \ {\sf for} \ ZZ \ {\sf polarization}$

CP sensitive angular variables for BSM

ZZ POLARIZATION: RESULTS

Polarization

 $Z_L Z_L$ production cross section measured at 4.3 σ (3.8 σ) observed (expected) at 2.44 ± 0.59 fb. SM prediction 2.09 ± 0.10 fb CP

No significant deviations from SM observed

SUMMARY

- Multiboson measurements probe SM EW sector and are sensitive to BSM contributions (aTGC and aQGC)
- Many new multiboson results this year exploiting the full Run 2 data set
- First observation of $WZ\gamma$ and $W\gamma\gamma$
- Some of the most precise cross section measurements of WW and $Z\gamma\gamma$
 - Including many differential cross section measurements
 - Interpreted in terms of EFT framework
- New ZZ polarization and CP measurement
- Future: Run 3 multiboson measurement efforts are ongoing

THANK YOU!