Searches for Dark Matter with ATLAS at the LHC

James Frost (james.frost@physics.ox.ac.uk)

Tuesday 18th July 2023

Collider Searches for Dark Matter

Though the presence of Dark Matter is well established, its nature is an open question.

 Dark Matter - explains wealth of astrophysical observations:

(adapted from 1305.1605)

- WIMP dark matter remains one attractive option.
 - Produced in early universe, now in thermal relic density.
 - Interaction with quarks via heavy mediator

Introduction to Collider DM searches

- Any WIMP DM produced at collider experiments will interact weakly and pass invisibly through detectors.
- Inferred through 'Missing E_T ' (E_T^{miss}) when event does not balance in plane transverse to beam.
- Visible radiation (photons, jets, vector bosons) from ISR or associated production can tag DM pair production.
- Consequently, collider searches focus on production of a SM particle(s) (X) with large E_T^{miss} .
- Dark Matter mediators need searches for new resonances.
 Complementary approaches.
- LHC can investigate and characterise the SM-DM interaction. Use simplified models (with mediator), and specific complete models to explore in LHC Run-2.

Models

James Frost (Oxford) Lepton Photon 2023

ATLAS Datasets and Luminosity

- LHC Run-2 ended in late 2018.
- An unprecendentedly sensitive dataset.
- Many results already published, and more being released regularly.
- But just the beginning...
- LHC Run-3 at 13.6 TeV is progressing well since last summer.
 - Greater luminosity and greater collision energy
 - More than double our data $(\sim 400 \text{ fb}^{-1})$ by 2025.

ATLAS Datasets and Luminosity

- LHC Run-2 ended in late 2018.
- An unprecendentedly sensitive dataset.
- Many results already published, and more being released regularly.
- But just the beginning...
- LHC Run-3 at 13.6 TeV is progressing well since last summer.
 - Greater luminosity and greater collision energy
 - More than double our data $(\sim 400 \text{ fb}^{-1})$ by 2025.

S-channel Mediator Simplified Models

- Introduce mediator, talks to DM and SM sectors.
- Two complementary approaches:
 - ► Look for DM mono-X signature
 - ► Look for mediator resonance search

LHCDMWG White Paper (1507.00966)

 Relic density: use to guide searches (simplified model_incomplete)

Putting it all together - Simplified Models I

- ATLAS DM Summaries
- Illustrate complementarity between mediator and invisible searches.

ATLAS Results and Summaries

Spin-0 Simplified Models

- Consider scalar/pseudo-scalar mediators
- Yukawa-type couplings → heavy quark (b/t)-associated searches dominate.

Relevant Signatures:

- $tt+E_T^{miss}$ combination
- $tW+E_T^{miss}$
- $bb+E_T^{miss}$
- monojet

PLB 842 137963

- 'Vanilla' Higgs portal
- Higgs boson mediates the interactions with DM, decays to DM
- Invisible Higgs' anomalous BR (H→ inv = 0.12% in SM).
- Signatures: E_T^{miss} + X, each Higgs production mode.
- Sensitivity led by VBF+E^{miss} and Mono-Z signatures.

Invisible Higgs Searches - Combined

PLB 842 137963

- Recent combination of 139 fb⁻¹ results, together with Run-1 analysis.
- VBF+ E_T^{miss} and Z+ E_T^{miss} most sensitive, Run-1 adds 4%.
- W/Z+jet modelling (VBF+E_T^{miss}) largest uncertainty.
- Already probing BR(H→ Inv) at the 10% level!

Analysis	Best fit $\mathcal{B}_{H o ext{inv}}$	Observed 95% U.L.	Expected 95% U.L.
Run 2 Comb.	0.04 ± 0.04	0.113	$0.080^{+0.031}_{-0.022}$
Run 1 Comb.	$-0.02^{+0.14}_{-0.13}$	0.252	$0.265^{+0.105}_{-0.074}$
Run 1+2 Comb.	0.04 ± 0.04	0.107	$0.077^{+0.030}_{-0.022}$

Models

James Frost (Oxford) Lepton Photon 2023

Extended Higgs sectors - 2hdm+a

- Higgs sector unique and unexplored
- Natural portal to dark matter
- LHC DM WG benchmark white paper (1810.09420)
- Postulate two-Higgs doublet (ext. Higgs sector)
- Pseudoscalar (a) portal to DM.
 Reduced constraint from DD.
- For heavier m_{DM}, target scalar sector mediators.
- Interesting physics from wide range of signatures and A-a mixing.

h→invisible, 139 fb⁻¹

- Insensitivity to DM mass allows R.D. satisfaction.
- But can vary the DM mass to show dependence.
- Heavy Higgs/Mediator searches constrain higher m_{χ} .

2HDM+a Light Pseudoscalars - What if a is light?

- Also complementarity with lower-mass ALP searches for pseudoscalars (2202.12631).
- Light resonant searches powerful when a cannot decay to DM.
- Invisible signatures kick in for lower DM masses.

Dark Sectors

- Have some hidden sector which (usually) includes a DM candidate
- Postulate a portal that communicates between SM and dark sectors, i.e. have some dark sector states decay back to SM with small coupling.
- Common in very weakly/feebly interacting models
- Dark sector need not be thermal freeze-in via heavy particle decays.

Portal

Dark Photon, A_{μ}

Dark Higgs, S

Axion, a

Sterile Neutrino, N

PBC Report

Dark Photons

Massive new dark gauge boson γ_D from U(1) extension Mixes with SM photon (ϵ parameter) Strategies for prompt and LLP signatures.

- Model: Higgs boson couples via dark sector
- Search for exotic decay
- Clean final state
- \bullet $Z \rightarrow \ell\ell$
- Cut on $m_{\ell\ell}$, $m_{\ell\ell\gamma}$, E_T^{miss}
- Train BDT and fit discriminant
- ullet CRs for ${m e}
 ightarrow \gamma$, ${m V}{m V}{\gamma}$

$$\mathcal{B}(h \to \gamma \gamma_D) <$$
 2.3 % at 95% CL.

cf. VBF+MET+ γ Paper: 1.8 %

- Dark Abelian Higgs adds dark Higgs h_D for massive dark photon A'.
- A' decays into lepton pairs (or hadrons)
- For light A' masses, $Z \rightarrow h_D A'$
- At least 2 lepton pairs
 similar masses.
- Fit to the average dilepton mass, $\bar{m}_{\ell\ell}$.
- $qq \rightarrow 4\ell$ dominant background.

Strongly-interacting dark sectors - dark QCD/showers

- What if dark sector confined?
- Simple mediator, but complex dark sector/matter phenomena.
- Generate dark quarks, hadronise into dark hadrons
- Dark hadrons: stable $\rightarrow E_T^{miss}$, unstable \rightarrow decay to SM. Invisible fraction r_{inv}
- Unusual hadronic signatures.
- Prompt dark hadron decay \rightarrow **Semi-visible jet signature**: SM jet aligned with E_T^{miss} .
- Also NEW dark meson search

Semi-visible Jets - t-channel

- High E_T^{miss} , two high- p_T jets.
- Discriminating variables: p_T^{bal} , p_T jet balance, $|\Delta \phi|$.
- Use 1-lepton, 1-bjet and 2-lepton CRs.
- SR requires E_T^{miss} >600 GeV and H_T >600 GeV.
- Fit to 9 p_T^{bal} - $|\Delta \phi|$ ranges.

Conclusions and Outlook

- ATLAS has a wide ranging and successful collider search programme.
- Includes range of WIMP hypotheses still many options
- Now also many results on other options
 dark photons, ALPs, dark sectors
- Often sophisticated analyses LHC Run-2 results still coming
- Run-3 dataset growing fast!
- Many new ideas, both experimental (new techniques, new signatures) and theoretical (new models, anomalies)
- Stay tuned!

Backup

2HDM+a - Overview

- UV complete model: pseudoscalar mediator with Extended Higgs sector.
- Rich phenomenology with great signature interplay.
- Complex model LHC DM WG white paper defines several benchmarks.
- Incorporates analyses from across ATLAS search programme.
- New addition single top (tW/tq) $+E_T^{miss}$ search (2211.13138).

2HDM+a Analyses - I. Mono-Higgs

- Higgs boson recoiling against E_T^{miss}
- Sensitive to DM lighter than a, reasonable A-a mass splitting
- \bullet 2- and 3-b signal regions \to sensitive to gg- and bb-induced production.

2HDM+a Analyses - I. Mono-Higgs

merged channel

3b, resolved channel

New: $h(\to \tau\tau) + E_T^{miss}$

Monojet Search - $Jet(s) + E_T^{miss}$

2102.10874

- Very general DM search!
- Selections:
 - ► Energetic jet pT > 150 GeV
 - ► *E*^{miss}₇ > 200 GeV
 - ▶ Up to 3 extra jets
 - ▶ Search for excess in E_T^{miss}
- Shape fit in 13 E_T^{miss} bins (p_T^{recoil})
- Backgrounds: Z+jets, W+jets, Diboson, tt̄
- Estimated in 1- and 2-lepton control regions
- High precision calculation (paper) of Z+jets/W+jets.
- O(1-2%) uncertainty on predicted background.

No significant excesses observed

Monojet Search - $Jet(s) + E_T^{miss}$ - Model Interpretations 2102.10874

Many interpretations

- Simplified Models
- Long lifetime limit of LLP models. (Reinterpretation Note)
- Generic sensitivity e.g. SUSY, leptoquarks, extra dimensions

Strongly interacting dark sector signatures

 Signature depends upon lifetime and balance of visible/invisible dark meson decays.

Fraction of invisible particles in the jet

Dark Meson search

ATLAS-CONF-2023-021

- Resonant production of dark ρ , dark π pair signature
- $\bullet \ \eta = m_{\pi_D}/m_{\rho_D}$
- ullet Consider $\eta <$ 0.5, thus $ho_D^{\pm,0}
 ightarrow \pi_D^\pm \pi_D^{\mp,0}$
- ullet Gaugephobic $o \pi_D^{0,+}$ decay to $tar t,\, tar b$
- ullet 3t,1b or 2t,2b \to 8-10 jets, 4 b-jets
- Fully hadronic signature, recluster into R = 1.2 jets.

Spare slide