

Searching for New Symmetries in the Higgs Sector at ATLAS

Yanlin Liu
Shandong University
On behalf of the ATLAS Collaboration

Lepton Photon 2023, July 17-21

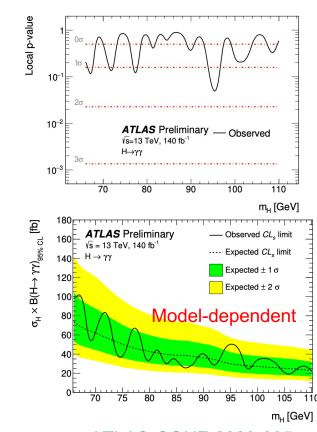
Physics Motivation

- The discovery of the Higgs boson confirmed the mass generation mechanism via spontaneous electroweak symmetry breaking and completed the SM
- However, additional scalar fields can explain phenomena that SM fails to answer, like new sources of CP violation, dark matter candidates, etc
 - 2 Higgs doublet model (2HDM): h, H, A, H[±]
 - 3HDM: 2 additional Higgs doublet; Georgi-Machacek (GM) Model: 1 Higgs doublet
 + 2 triplets
- This talk will present recent searches for additional low-/high-mass Higgs bosons, as well as decays of the SM Higgs boson to new light scalar particles, using full Run 2 data collected by the ATLAS detector at 13 TeV

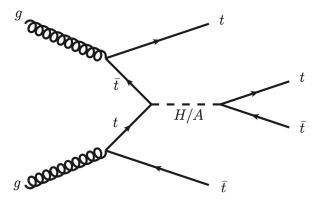
Analysis Topics Covered Today

- Search for additional neutral Higgs boson
 - \triangleright Low mass $H \rightarrow \gamma \gamma$
 - > ttH→4top
 - > WH→WWW
 - → H→hh
- Search for additional charged Higgs boson
 - > H⁺⁺→I⁺I⁺
 - > H⁺→WZ
 - > t→H+b, H+→cb
- Search for exotic decay of the SM Higgs boson
 - \rightarrow h \rightarrow aa \rightarrow 4 γ
 - h→aa→bbµµ

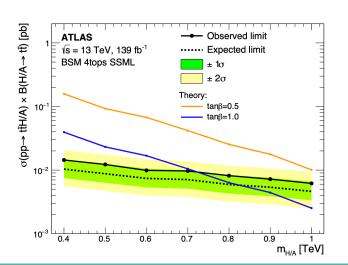
Caveat: SM Higgs boson denoted as "h" in this talk "I" refers to electron or muon



Search for Additional Neutral Higgs Boson

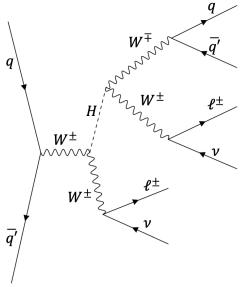

Search for Low-mass $H \rightarrow \gamma \gamma$

- Searching for low mass resonance within 66 - 110 GeV
- $\gamma\gamma$ selected with E_T > 22 GeV and E_T/m_{$\gamma\gamma$} > 0.38; Z->ee bkg. largely reduced via object BDT
- Events sorted into 9 categories based on photon conversion and BDTs
- Analytic function fit to the observed $m_{\gamma\gamma}$ spectra (62 120 GeV)
 - Allow data on either side of hypothetical signal peak to constrain bkg.

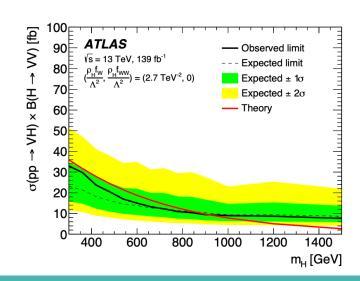


Search for Heavy Higgs in 4 Top Events

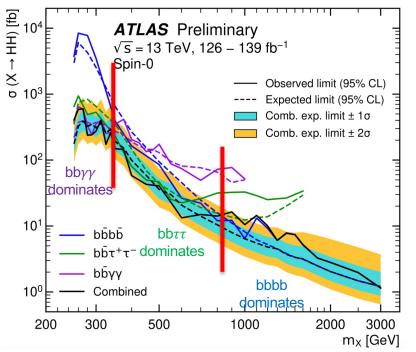
Predicted by 2HDM, heavy Higgs mass assumed to be 400 – 1000 GeV


- Events selected with 2 same-sign leptons or
 ≥3 leptons; ≥6 jets (≥2 of which are b-jets)
- Major bkg. coming from SM 4-top, ttW/Z/H
- BDT trained to separate sig. and bkg., used for final fitting

arXiv:2211.01136


Search for Heavy Higgs via WH Mode

A generic search for heavy H→WW→lvqq in the model where H is fermiophobic

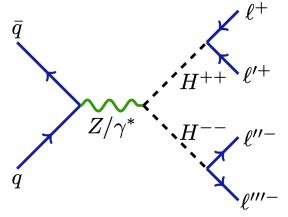

arXiv:2211.02617

- Single lepton un-prescaled trigger used
- Selected two same-sign leptons plus MET together with 2 small-R jets (resolved SR) or 1 large-R jet (boosted SR)
- No deviation from SM seen.

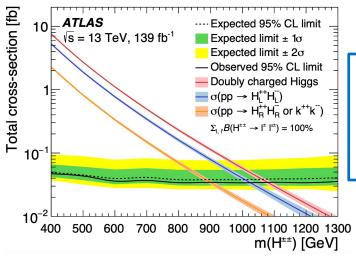
Search for Heavy Scalar with hh Events

- Many BSM theories predicted a heavy scalar decaying into two SM Higgs bosons
- Three major sensitive channels for hh: $bb\tau\tau$, 4b and $bb\gamma\gamma$
- Performed statistical combination for these three channels to maximize the sensitivity to heavy scalar resonance production

ATLAS-CONF-2021-052


No statistically significant excess found, largest excess at 1.1 TeV: local (global) significance is 3.2σ (2.1σ)

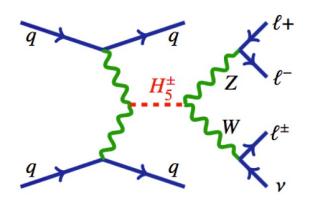
Search for Additional Charged Higgs Boson



Search for Doubly Charged Higgs

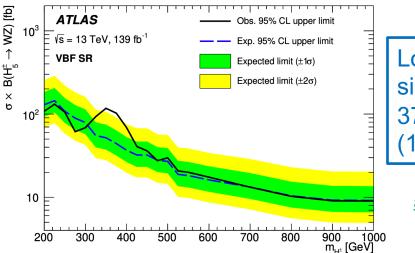
Predicted by various BSM models such as LRSMs, type-II seesaw models, Zee–Babu neutrino mass model, etc

- \geq 2 tight leptons (e/ μ , leptonic τ decays)
- Lepton-flavor-violating decays allowed
- 3 SRs: $I^{\pm}I^{\pm}$, $I^{\pm}I^{\pm}I^{\mp}$, $I^{+}I^{+}I^{-}I^{-}$, $m(I^{\pm}, I^{\pm})_{lead} > 300 \text{ GeV}$



Mass below 1080 (900) GeV excluded for LRSMs (Zee-Babu model)

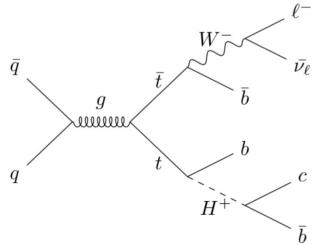
arXiv:2211.07505



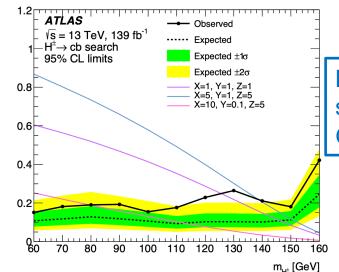
Search for Charged Higgs Decaying into WZ

Predicted by Georgi–Machacek (GM) model
Produced in VBF mode

- Events selected with 3 leptons and 2 forward jets
- ANN used for sig. and bkg. (WZ, ZZ, etc) classification
- WZ invariant mass used for final fitting


Local (global) significance for 375 GeV is 2.8 (1.6)σ

arXiv:2207.03925


Search for Charged Higgs in Top Decays

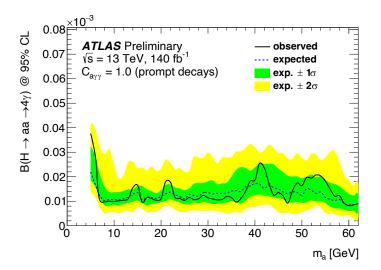
95% CL limit on 8 [%]

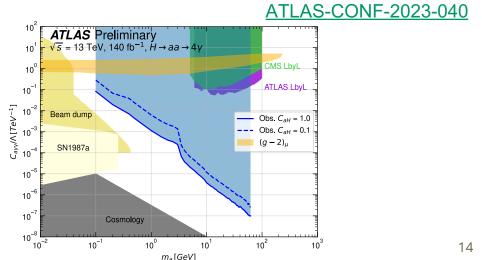
Predicted by 3HDM, where the lightest charged Higgs can be lighter than top quark

- Events selected with 1 e/µ and ≥4 jets
- NN trained to separate sig. vs bkg. (mainly from ttbar+jets) and used for fitting
- No significant data excess seen

Local (global) significance for 130 GeV is 3.0 (2.5)σ

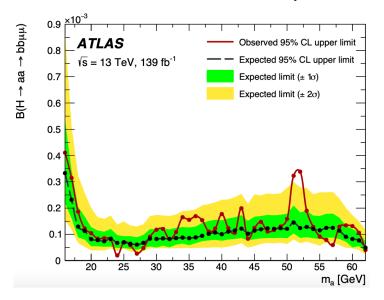
arXiv:2302.11739


Search for Exotic Decay of the SM Higgs Boson



Search for $h \rightarrow aa \rightarrow 4\gamma$

- Axion-like particles (ALPs) decaying into $\gamma\gamma$ is sensitive to various models that could explain (g-2)_µ discrepancy
- Signal signature depending on the axion mass (collimated/resolved photons) and $C_{a\gamma\gamma}$ (long-lived/promptly decaying)
- m_{inv}^{reco} (invariant mass of all photon candidates) used for final fitting

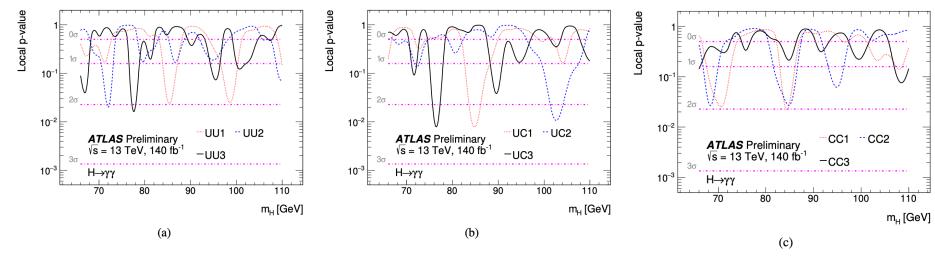


Search for h→aa→bbµµ

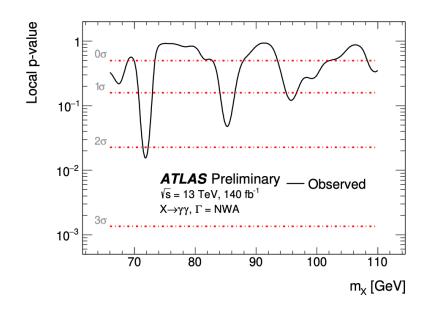
- Events selected with single/di-muon triggers, m_{µµ} in 15 65 GeV
- Performed kinematic likelihood fit exploiting equal m_{bb} and $m_{\mu\mu}$ to improve mass resolution and reduce bkg.
- BDT further trained to separate signal from SM bkg. (DY+jets, ttbar)

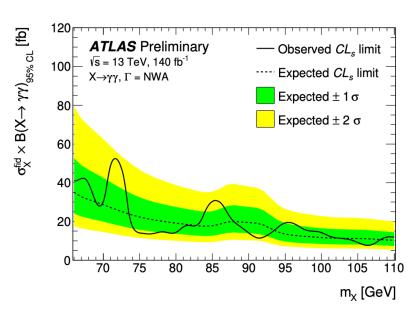
No significant excesses seen Local (global) significance for 52 GeV is $3.3 (1.7)\sigma$

Phys. Rev. D 105 (2022) 012006

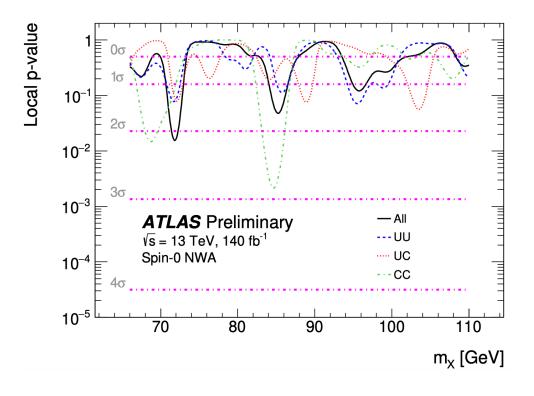

Summary

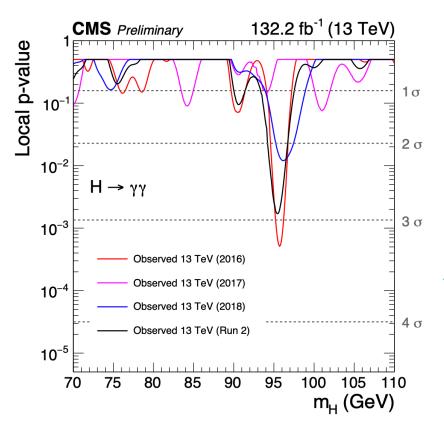
- Presented the latest searches for additional low/high-mass Higgs bosons, as well as decays of the SM Higgs boson based on the full Run 2 data
- Many other related searches not covered for today due to time constraint
 - ATLAS-CONF-2022-039, JHEP 01 (2022) 063, JHEP 03 (2022) 041, arXiv:2301.03902, etc
- No sign of new symmetries in the Higgs sector at the current precision level, stringent limits have been set according to relevant models
- Large amount for Run 3 data can provide us room for more precise probe, stay tuned!

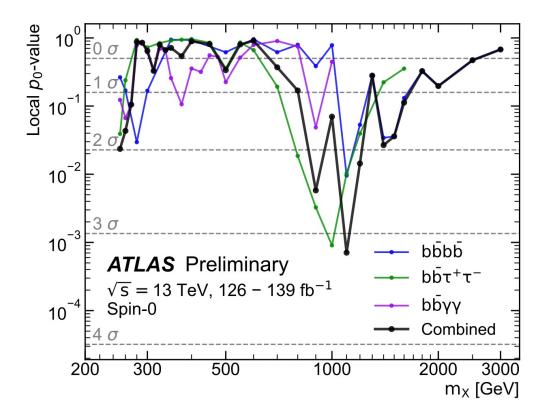

Backup

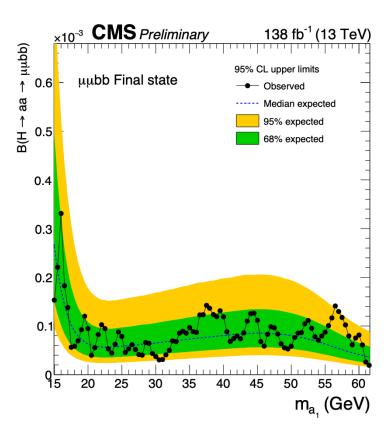


Model-dependent




Model-independent


Model-independent



CMS-PAS-HIG-20-002

