

ATLAS Trigger & Data Acquisition Upgrades for the High Luminosity LHC

Lepton Photon 2023 Melbourne, Australia, 18th July 2023

R. Kopeliansky, Indiana University

On behalf of the ATLAS Collaboration

With thanks to:

A. Alvarez Fernandez, I. Brawn, H. Evans, S. George, S. Martín-Haugh, W. Panduro Vazquez, D. Sankey for the help in preparing this talk

Outline:

- HL-LHC implications
 - ATLAS
 - TDAQ (Trigger & Data AcQuisition (DAQ))

- TDA@Phase-II
 - Operational model
 - Subsystems

"This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Award Number DE-SC0010120"

HL-LHC schedule

ATLAS in the HL-LHC

- ATLAS preparations for the HL-LHC:
 - New sub-detectors are being introduced: Inner Tracker (ITk) and High Granularity Timing Detector (HGTD) and a small number of Muon chambers
 - Electronics-only upgrades for other sub-detectors

^{*}Other forward detectors (LUCID, ZDC, AFP/ALFA) are not mentioned here, yet are included in the ATLAS upgrade plan

Implications on TDAQ

Detector system	Upgrade scope
ITk Pixel Detector ITk Strip Detector	Sensors, modules, mechanics, FE electronics Sensors, modules, mechanics,
	FE electronics Low gain avalanche detector technology
LAr Calorimeter Tile Calorimeter	FE and BE electronics Mechanics, FE and BE electronics
Muon Spectrometer	FE electronics Inner Barrel MDT chambers Inner Barrel RPC stations
TDAQ	On-detector readout and trigger electronics

- High luminosity & pileup ($\langle \mu \rangle \sim 200 \ vs \ 60$)
 - → need to 'scan' more complex events
- Accommodating the new subdetectors: ITk, HGTD
 - → support the sub-detectors electronics constraints (e.g. no. of channels to read-out)
- Full granularity to the LOTrigger provided by the detectors (LAr, Tile, Muon System)
 - \rightarrow exploiting the data for better triggering while dealing with bigger event sizes (4.6 vs 2 MB)
- Identification of low pT objects is still required
 - → maintaining low pT threshold in the trigger menu
- Would need to deal with an order of magnitude higher data volume through the system
- \rightarrow maintaining low trigger rates in order to keep only relevant events

The Phase-II TDAQ upgrade would enable lowering the single lepton Level-0 threshold to 20 GeV from 50 GeV (the projected threshold without the upgrade).

TDAQ Phase-11

Operation model:

- 3 systems:
 - Level-o Trigger
 - DAQ (Readout & Dataflow)
 - Event Filter

- Data flow from the detectors and into the LOTrigger systems at 40 MHz
- The LOTrigger: within 10 μs (2.5 μs today)
 - → identifies physics objects and calculates event-level physics quantities
 - → forms Trigger Objects (TOBs)
 - → makes trigger decision LOAccept (LOA)
 - → sends back to the detectors LOA signals
- Complete event-data **from** the **detectors** & **triggers** are then **transmitted** through the **Readout** & **Dataflow** systems for formatting & buffering, etc... and eventually **into** the **Event-Filter at 1 MHZ** (100 kHz today)
- The **Event Filter** performs **reconstruction & selection** of the events. The events that passed the **Event Filter** trigger decision (4.6 MB vs 2 MB today) will be **transferred** to **permanent storage** of the ATLAS offline computing system at 10 kHz (3 kHz today)

Lo Trigger

Composed of 4 main systems:

- LOCalo
- LOMuon & MUCTPI
- Global trigger
- Central Trigger Processor (CTP)

• ATCA-based architecture:

- **FPGAs** used for running algorithms
- Data I/O Via **optical links** at 9-25 Gb/s

Functionality:

- **Identifying** physics objects (e, γ , τ , jets)
- Calculates physics quantities (e.g. E_T^{miss})

Form Trigger Objects (TOBs)

Composed of 4 main systems:

- **LOCalo**
- LOMuon & MUCTPI
- Global trigger
- Central Trigger Processor (CTP)

Muon System Calorimeters Super Cells: Muon Trigger Primitives jTowers. gTowers L0Calo L0Muon NSW Trigger Processor jFEX MDT Trigger Endcap Sector Logic Processor Sector Logic Muon Track Candidates **TOBs** MUCTPI **TOBs Global Trigger** multiplicities CTP

Localo

CERN-LHCC-2017-020

combined selections of eFEX and Global reduces the trigger rates for the essential low p_T thresholds

Localo

- **Composed of 4 Feature EXtractors (FEXs)**
 - electron-FEX (eFEX), jet-FEX (jFEX), global-FEX (gFEX) and forward-FEX (fFEX)
- *Mostly **Phase-I legacy**:
 - Upgraded firmware for phase-II algorithms
 - *Additional trigger coverage fFEX
- Inputs to the algorithms *Use coarse-granularity calorimeter data
 - *The fFEX will use full-granularity
- **Identify** physics objects (e, γ , τ , jets) and **calculate** E_T^{miss}
- Final **Trigger Objects** are **sent to the Global Trigger** for further processing

Subsystem	Trigger Object Approximate Granularity		Coverage $ \eta $
eFEX	e, γ, τ	Super Cells (10 in 0.1×0.1)	< 2.5
jFEX	$ au$, jet, E_T^{miss}	$0.1 \times 0.1 \\ 0.2 \times 0.2$	< 2.5 2.5 – 3.2
gFEX	Large-R jet, E_T^{miss}	0.4×0.4 0.2×0.2	3.2 – 4.9 < 4.9
fFEX	e, y	0.4 × 0.4 Full detector EMEC, HEC, FCal	3.2 - 4.9 $2.5 - 4.9$
	jet	Full detector FCal	3.2 – 4.9

Composed of 4 main systems:

- LOMuon & MUCTPI
- Global trigger

10Calo

Central Trigger Processor (CTP)

MDT-TP Command Module

LOMUON + MUCTPI

Calorimeters **Muon System** Super Cells: Muon Trigger Primitives jTowers. L0Muon L0Calo Processor gFEX fFEX **jFEX** MDT Trigger Sector Logic Processor Muon Track Candidates **TOBs** MUCTPI TOBs Global Trigger

LOMUON & MUCTPI

- CERN-LHCC-2017-020
- ∃fficiency 0.8 ATLAS Simulation <μ>=0, lηl<2.4, p_ trigger >20 GeV Phase-II RPC or TGC Phase-II (RPC or TGC) & MDT Including MDT info in the Muon triggers:
 - provides better sensitivity to muon candidates
 - while still keeping the trigger eff. high

- *Upgraded muon trigger system, composed of 4 trigger-processors (TP)
 - RPC (Resistive Plate Chambers) Sector Logic (SL), TGC (Thin Gap Chambers) SL, NSW (New Small Wheel) TP as legacy, with new design
 - *MDT (Monitored Drift Tube) are the precision muon chambers, their TP is a new addition to LOMuon (further details in G. Loustau's poster)
- Receive full granularity data inputs from:
 - all Muon subsystems
 - subset of Tile data
- Higher quality trigger candidates due to:
- Subsystem Granularity Coverage | η | Full NSW detector NSW processor 1.3 - 2.4MDT processor Full MDT detector < 2.4Full RPC and Tile, MDT < 1.05Barrel Sector Logic Endcap Sector Logic | Full TGC, Tile, RPC, NSW, MDT 1.05 - 2.4
- **Increased detector acceptance** (additional RPC chambers providing further hits)
- Additional processing of the MDT data, seeded by both barrel & end-cap information, forming pattern recognition & tracking
- The MUCTPI (Muon to CTP Interface) combines information for final refined selection
 - Legacy hardware with upgraded firmware (additional blade for Phase-II is being considered)
 - Forming final TOBs sent to the Global Trigger for further processing

Sector-Logic prototype

multiplicities

Global Trigger

Composed of 4 main systems:

- LOCalo
- LOMuon & MUCTPI
- Global trigger
- Central Trigger Processor (CTP)

Global

- Receiving information from the Calorimeters, LOCalo and MUCTPI at a total input rate of 50 TB/s
- Composed of 3 main components, (same hardware platform):
- **MUX** time **multiplexing** serial **inputs**:
 - **LOCalo** systems
 - **Calorimeter** pre-processors
 - MUCTPI
- GEP (Global Event Processor) execute "offline-like" processing algorithms, running on state-of-the-art Xilinx Versal Premium FPGAs:
 - **Topological** clustering
 - Sophisticated pileup subtraction
 - Anti-kT jet finding
 - Machine Learning techniques usage
 - Refined candidate (e, γ , τ , jets) **identification**
 - **Topological** selections to TOBs
- **CTP interface** routes the results to the CTP and generates TTC signals (see next slide)

GCM (XILINX US+) prototype

Central Trigger

Composed of 4 main systems:

- LOCalo
- LOMuon & MUCTPI
- Global trigger
- Central Trigger Processor (CTP)

CTP

- The last step of the LO processing chain
- Interface with the LHC for reception the beam timing signals
- Receive inputs from:
 - Global trigger
 - MUCTPI
 - Various **forward detectors**
- Functionality:
 - **Align & combine** digital trigger inputs (1024 vs 512 now)
 - Makes final **LOAccept decision** (considering trigger menu configuration, prescale factors and dead-time)
- Transmits to the ATLAS subdetectors via the Trigger, Timing and Control system (TTC):
 - The 40 MHz **beam synchronous clock**
 - **The LOA** signal with fixed latency

The Local Trigger Interface (LTI) provides an interface for the TTC signals between the CTP and subdetector front-end electronics via FELIX (see next slide)

DAQ: Readout & Dataflow

Composed of 3 main systems:

- FELIX
- Data Handlers
- Dataflow

FELIX (FLX-182) prototype

FELIX

- Front-End Link eXchange (FELIX):
 - provides common **interface** between the subdetectors and the DAQ system
- Composed of:
 - **PC** hosting custom **FPGA** I/O cards
- Functionality:
 - **Propagating trigger & command** signals (i.e LOA, TTC) to the subdetectors
 - **Transmits** the full detector data up to the DAQ system

Event Filter system:

- Processor Farm

Event Filter

Event Filter (EF)

- Recent change in strategy: moved from custom-hardware tracking to a full commodity solution
- A heterogeneous system integrating multiple types of computational units
 - Commodity CPU-server farm with accelerators (FPGAs, GPUs) is being considered
 - Final technology choice (CPU/FPGA/GPU) will be made in 2025 after a program of demonstrators
- 1 MHz data input rate from the DAQ system
- Runs event reconstruction algorithms (~ offline reconstruction quality)
 - Integration with A Common Tracking Software (ACTS)
- Examples for potential reconstruction elements under study:
 - EF tracking: track reconstruction using ITk seeds and extrapolation of hit patterns using Neural Network
 - EF Calo: topological clustering using accelerators and machine-learning algorithms
 - EF Muon: muon reconstruction using machine-learning based algorithms on NSW information
- Final event selection (according to the trigger menu) should be at maximum 10 kHz rate

CPU-usage comparison for track reconstruction as a function of average pile-up, using: the tracking software available at the beginning of Phase-II planning (2017) vs upgraded software prototype (2022)

Summary

Summary:

TDAQ is being extensively upgraded to enable the ATLAS HL-LHC physics program:

- Benefit from conclusions deduced from previous runs along with the current Phase-I upgrade experience
- Combine information with the LOGlobal trigger for refined selection and trigger rate reduction
- Implement sophisticated algorithms for better triggering & reconstruction
- Improve reconstruction and reducing event rates by:
 - Increase detector coverage and high granularity data events (e.g. RPC, fFEX)
 - Including more subdetectors information at the trigger level (e.g. MDT, NSW)
 - Heterogeneous commodity system allowing usage of advanced technologies for high performance reconstruction (e.g. EF)

Status & Plans:

- All requirements on TDAQ have already been evaluated and the developments are in advanced stages
- Prototypes hardware produced for ~all systems. More advanced versions on the way
- Firmware development well advanced
- Beginning integration tests between systems

Backup...

ATLAS in the HL-LHC

- ATLAS preparations for the HL-LHC:
 - New sub-detectors are being introduced: Inner Tracker (ITk) and High Granularity Timing Detector (HGTD) and a small number of Muon chambers
 - *Electronics-only upgrades for other sub-detectors*

	* Detector system	Upgrade scope	CDS Reference
New inner tracker	ITk Pixel Detector ITk Strip Detector	Sensors, modules, mechanics, FE electronics Sensors, modules, mechanics, FE electronics	CERN-LHCC-2017-021 CERN-LHCC-2017-005
Extra pile-up mitigation	HGTD	Low gain avalanche detector technology	CERN-LHCC-2020-007
Higher radiation tolerance, providing full granularity data to the triggers		FE and BE electronics Mechanics, FE and BE electronics	<u>CERN-LHCC-2017-018</u> <u>CERN-LHCC-2017-019</u>
Improved trigger coverage	Muon Spectrometer	FE electronics Inner Barrel MDT chambers Inner Barrel RPC stations	<u>CERN-LHCC-2017-017</u>
Díscussed in this presentation	TDAQ	On-detector readout and trigger electronics	<u>CERN-LHCC-2017-020</u> <u>CERN-LHCC-2022-004</u>

^{*}Other forward detectors (LUCID, ZDC, AFP/ALFA) are not mentioned here, yet are included in the ATLAS upgrade plan

Single electron trigger rates as a function of leading electron p_T

- E_{ratio} - usage of the 1st layer of the LAr, that is not available in eFEX but will be available in Global

$$E_{\rm ratio} = \frac{E_{\rm highest\; energy\; cell} - E_{\rm 2nd\; local\; maximum\; energy\; cell}}{E_{\rm highest\; energy\; cell} + E_{\rm 2nd\; local\; maximum\; energy\; cell}}$$

 \downarrow including E_{ratio} + topocluster isolation reduces the rate by \sim 70% at 20 GeV