Recent Belle II results on hadronic B decays

Xiaodong Shi（KEK）
On behalf of the Belle II Collaboration

31st Lepton Photon Conference
MELBOURNE CONVENTION
\＆EXHIBITION CENTRE

Hadronic B decays

$b \rightarrow c, u$ trees and $b \rightarrow d, s$ penguins.

Measure all three CKM angles:

- ϕ_{1} with $B^{0} \rightarrow J / \psi K_{S}^{0}, B^{0} \rightarrow \phi K_{S}^{0}, B^{0} \rightarrow K_{S}^{0} K_{S}^{0} K_{S}^{0}, B^{0} \rightarrow K_{S}^{0} \pi^{0}$...

- ϕ_{2} with $B \rightarrow \rho \rho, B \rightarrow \pi \pi$ isospin analysis,
- ϕ_{3} with $B^{ \pm} \rightarrow D K^{ \pm}$, few different methods,

Analysis workflow

$\sim 20 \%$ of hadronic events from $e^{+} e^{-}$are $B \bar{B}$.
10 tracks/clusters on average \rightarrow easy to trigger on unbiasing variables (e.g. number of tracks)

Main backgrounds: $e^{+} e^{-} \rightarrow q \bar{q}$ (collimated jets); B process due to misID.

Reconstruction: all final state particle formed to B meson
Selection: event-shape variables based classifier to suppress $q \bar{q}$ background; particle ID criteria

Fit: usually on $\Delta \mathrm{E}, M_{\mathrm{bc}}$ classifier output (C^{\prime}), etc...
Systematic uncertainties: toy studies, control modes
Validation \& unblinding: validate the full analysis on a control channel; frozen all procedure when open box.

ϕ_{3} from $B^{ \pm} \rightarrow D K^{ \pm}$decays

favored

- CPV in the interference between $b \rightarrow c \bar{u} s$ and $b \rightarrow u \bar{c} s$
- Irreducible error in SM calculation $\sim 10^{-7}$ [arXiv:1308.5663]
- W.A. $\phi_{3}=\left(65.9_{-3.5}^{+3.3}\right)^{\circ}$ [HFLAV], dominated by LHCb.

$\phi_{3}=(78.4 \pm 11.4 \pm 0.5 \pm 1.0)^{\circ}$
[JHEP 02 2022, 063 (2022)]

ϕ_{3} with GLW method (CP eigenstates)

$B^{ \pm} \rightarrow D K^{ \pm}$with $D \rightarrow K^{+} K^{-}$(CP-even) or $D \rightarrow K_{S}^{0} \pi^{0}$ (CP-odd)
Belle(II)'s advantage

$$
\begin{array}{c|l}
R_{C P \pm}=\frac{\mathcal{B}\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)+\mathcal{B}\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)}{\mathcal{B}\left(B^{-} \rightarrow D^{0} K^{-}\right)+\mathcal{B}\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right)} & \begin{array}{l}
\mathcal{R}_{C P+}=1.164 \pm 0.081 \pm 0.036 \\
\mathcal{R}_{C P-}=1.151 \pm 0.074 \pm 0.019 \\
A_{C P \pm}
\end{array}=\frac{\mathcal{B}\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)-\mathcal{B}\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)}{\mathcal{B}\left(B^{-} \rightarrow D_{C P \pm} K^{-}\right)+\mathcal{B}\left(B^{+} \rightarrow D_{C P \pm} K^{+}\right)}
\end{array} \begin{aligned}
& \mathcal{A}_{C P+}=(+12.5 \pm 5.8 \pm 1.4) \% \\
& \mathcal{A}_{C P-}=(-16.7 \pm 5.7 \pm 0.6) \%
\end{aligned}
$$

World average: $\phi_{3}=\left(65.9_{-3.5}^{+3.3}\right)^{\circ}, r_{B}=0.0994 \pm 0.0026$
Evidence for difference in $A_{C P^{ \pm}}$. 3.5σ)
Large $R_{C P^{+}}$compare to W.A. \rightarrow large r_{B}, but consistent with W.A. in 2.5σ.

흠

$189 \mathrm{fb}^{-1}$ Belle II $+711 \mathrm{fb}^{-1}$ Belle

ϕ_{3} with GLS method (SCS)

$B^{ \pm} \rightarrow D K^{ \pm}, D \pi^{ \pm}$with $D \rightarrow K_{S}^{0} K^{ \pm} \pi^{\mp}$: SS: same-sign, OS: opposite sign
Two sets of results: in full D phase space and in the $K^{*} K$ region (expected large δ_{D}).
Measure 4 Acp and 3 BR ratios.
In K*K region:

$$
\begin{aligned}
A_{\mathrm{SS}}^{D K} & =0.055 \pm 0.119 \pm 0.020, \\
A_{\mathrm{OS}}^{D K} & =0.231 \pm 0.184 \pm 0.014, \\
A_{\mathrm{SS}}^{D \pi} & =0.046 \pm 0.029 \pm 0.016, \\
A_{\mathrm{OS}}^{D \pi} & =0.009 \pm 0.046 \pm 0.009, \\
R_{\mathrm{SS}}^{D K / D \pi} & =0.093 \pm 0.012 \pm 0.005, \\
R_{\mathrm{OS}}^{D K / D \pi} & =0.103 \pm 0.020 \pm 0.006, \\
R_{\mathrm{SS} / \mathrm{OS}}^{D \pi} & =2.412 \pm 0.132 \pm 0.019,
\end{aligned}
$$

Consistent with LHCb's, but not competitive.
Contribute to constrain ϕ_{3} in combination with other ϕ_{3}-results from Belle and Belle II.

ϕ_{2} results with $B \rightarrow \pi \pi$

Loop-process

- The CKM angle with most poor precision at the moment: W.A. $\phi_{2}=\left(85.2_{-4.3}^{+4.8}\right)^{\circ}$ [HFLAV].
- Determined using $B \rightarrow \rho \rho, B \rightarrow \pi \pi$ isospin analysis: using the Br and $A_{C P}$ to reduce hadronic uncertainties.

$$
\begin{gathered}
\operatorname{Br}\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)=(5.83 \pm 0.22 \pm 0.17) \times 10^{-6} \\
\operatorname{Br}\left(B^{+} \rightarrow \pi^{+} \pi^{0}\right)=(5.10 \pm 0.29 \pm 0.32) \times 10^{-6} \\
A_{C P}\left(B^{+} \rightarrow \pi^{+} \pi^{0}\right)=-0.081 \pm 0.54 \pm 0.008
\end{gathered}
$$

Unique Belle II capability to study all channels.
Last year: $\rho^{+} \rho^{0}, \rho^{+} \rho^{-}$[arXiv:2206.12362, 2208.03554]

We have $\pi \pi$ results now.
For $\pi^{0} \pi^{0}$, achieve Belle Br precision using only $1 / 3$ of data.

$$
\begin{gathered}
\operatorname{Br}\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)=(1.38 \pm 0.27 \pm 0.22) \times 10^{-6} \\
A_{C P}\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)=0.14 \pm 0.46 \pm 0.07
\end{gathered}
$$

Isospin sum rule test in $K \pi$

$$
I_{K \pi}=\mathscr{A}_{K^{+} \pi^{-}}+\mathscr{A}_{K^{0} \pi^{+}} \cdot \frac{\mathscr{B}_{K^{0} \pi^{+}}}{\mathscr{B}_{K^{+} \pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}}-2 \mathscr{A}_{K^{+} \pi^{0}} \cdot \frac{\mathscr{B}_{K^{+} \pi^{0}}}{\mathscr{B}_{K^{+} \pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}}-2 \mathscr{A}_{K^{0} \pi^{0}} \cdot \frac{\mathscr{B}_{K^{0} \pi^{0}}}{\mathscr{B}_{K^{+} \pi^{-}}} \approx 0
$$

- SM prediction: 0 within 1\% precision. [Phys. Lett. B627 (2005) 82-88]
- Current W.A.: $I_{K \pi}=-0.13 \pm 0.11$, major limitation from the $A_{K 00}^{0} \pi^{0}$.

Belle II unique possibility!

Isospin sum rule test in $K \pi$

$$
B^{0} \rightarrow K^{+} \pi^{-}
$$

$$
\begin{gathered}
\mathrm{Br}=(20.67 \pm 0.37 \pm 0.62) \times 10^{-6} \\
A_{C P}=-0.072 \pm 0.019 \pm 0.007 \\
\hline
\end{gathered}
$$

$$
B^{+} \rightarrow K_{S}^{0} \pi^{+}
$$

$$
\begin{gathered}
\mathrm{Br}=(24.40 \pm 0.71 \pm 0.86) \times 10^{-6} \\
A_{C P}=0.046 \pm 0.029 \pm 0.007
\end{gathered}
$$

$$
B^{+} \rightarrow K^{+} \pi^{0}
$$

$$
\begin{gathered}
\mathrm{Br}=(14.21 \pm 0.38 \pm 0.85) \times 10^{-6} \\
A_{C P}=0.013 \pm 0.027 \pm 0.005
\end{gathered}
$$

$$
\begin{gathered}
B^{0} \rightarrow K_{S}^{0} \pi^{0} \\
\mathrm{Br}=(10.16 \pm 0.65 \pm 0.65) \times 10^{-6} \\
A_{C P}=-0.06 \pm 0.15 \pm 0.05
\end{gathered}
$$

All results agree and are competitive with world's best.
Br systematically limited, major ones: $\pi^{0}, f^{+-/ 00}$.
$B^{0} \rightarrow K_{S}^{0} \pi^{0}$ result combined with time-dependent analysis [arXiv:2206.07453]
\rightarrow world's best $\underline{A}_{C P}\left(K_{S}^{0} \pi^{0}\right)=-0.01 \pm 0.12 \pm 0.05$
$\underline{I}_{K \pi}=-0.03 \pm 0.13 \pm 0.05\left(W . A . I_{K \pi}=-0.13 \pm 0.11\right)$
Competitive precision to world's best with $362 \mathrm{fb}^{-1}$ data set.

$B \rightarrow D^{(*)} K K_{S}^{0}$ study

$B \rightarrow D^{(*)} K K_{S}^{0}$ makes up few \% BR, but only 0.28\% measured.

3 new observations modes ($D^{+}, D^{* 0}, D^{*-}$); x3 precision of D^{0} mode.
arXiv:2305.01321
$\mathcal{B}\left(B^{-} \rightarrow D^{0} K^{-} K_{S}^{0}\right)=(1.89 \pm 0.16 \pm 0.10) \times 10^{-4}$
$\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{+} K^{-} K_{S}^{0}\right)=(0.85 \pm 0.11 \pm 0.05) \times 10^{-4}$
$\mathcal{B}\left(B^{-} \rightarrow D^{* 0} K^{-} K_{S}^{0}\right)=(1.57 \pm 0.27 \pm 0.12) \times 10^{-4}$
$\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} K^{-} K_{S}^{0}\right)=(0.96 \pm 0.18 \pm 0.06) \times 10^{-4}$

Improve simulation and help in B-tagging tool.

Summary

With 362/fb data set, new recent results from Belle II:

- ϕ_{3} results with GLW, GLS methods.
- ϕ_{2} results with $B \rightarrow \pi \pi$, with π^{0} final states.

Get same level $\operatorname{Br}\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)$'s precision with only $1 / 3$ data set.

- Sum rule test in $K \pi$: world's best $A_{C P}\left(K_{S}^{0} \pi^{0}\right)$, competitive $I_{K \pi}$ precision.
- $B \rightarrow D^{(*)} K K_{S}^{0}$: there decay channels observed for first time.

More results coming from Belle II! Stay tuned!

