

Precision measurements of W and Z production at ATLAS

Zhibo Wu
On behalf of the ATLAS Collaboration

19/07/2023

Introduction

- The Drell-Yan mechanism was proposed and observed in 1970, then led to the discovery of W and Z bosons in 1983, therefore confirming the electroweak unification.
- Standard candle for precision measurements and theory at LHC.
- Precision measurements help check the consistency of the Standard Model (SM) through the electroweak fit:

m_W re-analysis at 7 TeV (ATLAS-CONF-2023-004)

 Differential measurements give information on perturbative and nonperturbative QCD, which in turn reduces the modeling uncertainties in the precision measurements:

> Z p_T and y at 8 TeV (<u>ATLAS-CONF-2023-013</u>) Extraction of α_s from p_T^Z at 8 TeV (<u>ATLAS-CONF-2023-015</u>) p_T^W and p_T^Z with low pile-up data (<u>ATLAS-CONF-2023-028</u>)

m_W re-analysis at 7 TeV

Importance of m_W measurement:

- Input to global EW fit.
- Indirect search of BSM physics.
- Independent check of the new CDF result.

Measurement strategy:

- Leptonic decay of W-boson.
- Use the dependence of lepton transverse momentum (p_T^l) and W transverse mass (m_T) to determine m_W .

$$\begin{split} m_T &= \sqrt{2 p_T^l E_T^{miss} \left(1 - \cos\left(\varphi_l - \varphi_{E_T^{miss}}\right)\right)} \\ \vec{p}_T^{miss} &= - \left(\vec{p}_T^l + \vec{u}_T\right) \text{ for the neutrino} \end{split}$$

$$m_W^2 \left(1 - \frac{m_W^2}{m_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2} G_F} (1 + \Delta r)$$

m_W re-analysis at 7 TeV

New result:

$$m_W = 80360 \pm 5 \text{ (stat.)} \pm 15 \text{ (syst.)} = 80360 \pm 16 \text{ MeV}$$

- Detector calibration mostly reused from the previous measurement.
- Dominant uncertainties: lepton calibration and PDF.
- Update PDF set: CT10NNLO -> CT18NNLO

χ^2 offset method -> profile likelihood fit:

- Total uncertainty reduced by 15%: 19 MeV -> 16 MeV.
- Central value closer to the SM prediction: 10 MeV shift.

Obs.	Mean	Elec.	PDF	Muon	EW	PS &	Bkg.	Γ_W	MC stat.	Lumi	Recoil	Total	Data	Total
	[MeV]	Unc.	${ m Unc.}$	${ m Unc.}$	Unc .	A_i Unc.	Unc.	Unc.	Unc .	Unc .	$\operatorname{Unc.}$	sys.	stat.	Unc.
p_{T}^{ℓ}	80360.1	8.0	7.7	7.0	6.0	4.7	2.4	2.0	1.9	1.2	0.6	15.5	4.9	16.3
$m_{ m T}$	80382.2	9.2	14.6	9.8	5.9	10.3	6.0	7.0	2.4	1.8	11.7	24.4	6.7	25.3

Improvements mainly ~15% ~40% brought by profiling. ~30% ~10%

Z p_T and rapidity at 8 TeV

• Simultaneous measurement of cross-sections and angular coefficients in full lepton phase space, double differential in p_T and y near the Z pole.

$$\frac{d^3\sigma^{U+L}}{dp_T dy dm} \left(1 + \cos^2\theta + \sum_{i=0}^7 A_i(y, p_T, m) P_i(\cos\theta, \phi)\right)$$

 Better probe of large rapidity/small parton momentum fraction thanks to the improved forward electrons calibration.

ee_{CC}: Two electrons with $p_T > 20$ GeV and $|\eta| < 2.4$

 $\mu\mu_{CC}$: Two muons with $p_T > 20$ GeV and $|\eta| < 2.4$

 ee_{CF} : central electron with $p_T > 20$ GeV and $|\eta| < 2.4$ forward electron with $p_T > 20$ GeV and $2.5 < |\eta| < 4.9$

Z p_T and rapidity at 8 TeV

Stringent test of the state-of-the-art QCD theories.

Double differential cross-section: Statistics dominated. PDF uncertainty at $10^{-4} \sim 10^{-3}$.

 p_{T}^{Z} comparison with aN 4 LL analytical resummation: good agreement.

Rapidity: Permille level precision in the central region and subpercent precision up to |y| <3.6. ➤ NLO EW corrections computed with ReneSANCe.

Extraction of α_s from p_T^Z at 8 TeV

- α_s is the least well know coupling constant.
- Non-zero p_T^Z given by the QCD ISR -> The Sudakov peak of p_T^Z is linearly sensitive to α_s .
- Profiled χ^2 template fit:
- > Equivalent to including the new dataset in the PDF without refitting
- >The non-perturbative form factor is added with unconstrained nuisance parameters.

$$\chi^{2}(\beta_{\text{exp}}, \beta_{\text{th}}) = \sum_{\substack{N_{\text{data}} \\ \sum_{i=1}^{N_{\text{data}}}} \frac{\left(\sigma_{i}^{\text{exp}} + \sum_{j} \Gamma_{ij}^{\text{exp}} \beta_{j, \text{exp}} - \sigma_{i}^{\text{th}} - \sum_{k} \Gamma_{ik}^{\text{th}} \beta_{k, \text{th}}\right)^{2}}{\Delta_{i}^{2}} + \sum_{j} \beta_{j, \text{exp}}^{2} + \sum_{k} \beta_{k, \text{th}}^{2}.$$

β: NPs for experimental systematics and PDF variations. Γ: The influence of uncertainties on data and prediction.

Δ: Uncorrelated experimental uncertainties.

Relative

Extraction of α_s from p_T^Z at 8 TeV

- Fit range: p_T^Z < 29 GeV of the double differential Z p_T , y measurement.
- The most precise experimental measurement of α_s .
- The first α_s determination with N³LO+aN⁴LL prediction for p_T^Z . (Baseline PDF set: aN³LO MSHT20)

Good convergence of α_s determination using different orders of resummation series.

p_T^W and p_T^Z with low pile-up data

 $2017+2018 < \mu > \sim 2$ data: 255 pb^{-1} at 5.02 TeV and 338 pb^{-1} at 13 TeV.

- Motivation: Reduce the p_T^W modelling uncertainty in m_W measurement by replacing the Z->W extrapolation with a direct measurement.
- Probe of perturbative and non-perturbative QCD in W events thanks to the improved missing $E_{\rm T}$ resolution, as well as in Z events at 5.02 TeV.
- Dedicated efforts for both theory modelling and detector calibration.

Detector calibration

Calibration of recoil (u_T) is carried out in-situ using Z events.

- Correction of mis-modelling of underlying event.
- Corrections of the azimuthal angle, response and resolution.

Lepton calibration uses high <µ> data extrapolated to low <µ> conditions wherever possible. Otherwise the in-situ calibrations are performed using standard ATLAS techniques.

The hadronic system recoils against p_T^W .

- Input of recoil reconstruction: Particle Flow Objects.
- Inference of neutrino p_T : $\vec{p}_T^{miss} = -(\vec{u}_T + \vec{p}_T^l)$

Analysis strategy

- Iterative Bayesian Unfolding: $u_T \rightarrow p_T^W$ and $p_T^{ll} \rightarrow p_T^Z$.
- ≥9 (25) iterations with 7 GeV bin width in the low p_T^W region for W channels at 5.02 (13) TeV.
- \geq 2 iterations with 7 GeV bin width at low p_T^Z for Z.
- Good compatibility in the combination of electron and muon channels.

Combination χ^2

Chamici	λ / ασι
$5.02\mathrm{TeV}$	
$W^- \to \ell^- \nu$	14.6/15
$W^+ o \ell^+ \nu$	14.5/15
$W o \ell u$	12.1/15
$Z o \ell \ell$	13.7/26
$W^+ \to \ell^+ \nu / W^- \to \ell^- \nu$	13.0/15
$W o \ell u/Z o \ell \ell$	16.3/15
$13\mathrm{TeV}$	
$W^- \to \ell^- \nu$	16.0/17
$W^+ o \ell^+ u$	17.6/17
$W o \ell u$	22.1/17
$Z o \ell \ell$	21.4/27
$W^+ \to \ell^+ \nu / W^- \to \ell^- \nu$	11.3/17
$W o \ell u/Z o \ell \ell$	17.1/17
Ratio 13 TeV/5.02 T	eV
$W^- \to \ell^- \nu$	11.5/15
$W^+ o \ell^+ \nu$	9.3/15
$W o \ell u$	7.3/15
$Z \to \ell \ell$	14.2/25

Fiducial volume:

 $p_T^l > 25 \text{ GeV}, |\eta_l| < 2.5$

W: $p_T^{\nu} > 25$ GeV and $m_T^W > 50$ GeV

 $Z: 66 < m_{ll} < 116 \text{ GeV}$

Results at 5.02 TeV

Good agreement with ATLAS tunes on 7 TeV Z data at low p_T .

Results at 13 TeV

 Parton showers tuned with ATLAS 7 TeV Z data fail to describe the data at 13 TeV.

Summary

- New preliminary m_W measurement by ATLAS at 7 TeV has improved the precision by 15% thanks to the better fit method.
- The Z p_T and y double differential cross-section has been measured in the full lepton phase space for the first time and compared with theory predictions. No significant tension to the state-of-the-art predictions with QCD accuracy up to N³LO+aN⁴LL is observed.
- The most precise experimental determination of α_s has been achieved by ATLAS.
- New preliminary p_T^W and p_T^Z measurement using low pile-up dataset is reported. Its sensitivity to the Sudakov region will bring improvements in future m_W measurements.

Backup

PLH fit vs χ^2 offset method: stat. only

PLH fit: shift of the central value

 p_T^l fit

m_T fit

Comparison between PDF sets

PDF-Set	$p_{\mathrm{T}}^{\ell} \; [\mathrm{MeV}]$	$m_{\mathrm{T}} \; [\mathrm{MeV}]$	combined [MeV]
CT10	$80355.6^{+15.8}_{-15.7}$	$80378.1^{+24.4}_{-24.8}$	$80355.8_{-15.7}^{+15.7}$
CT14	$80358.0^{+16.3}_{-16.3}$	$80388.8^{+25.2}_{-25.5}$	$80358.4_{-16.3}^{+16.3}$
CT18	$80360.1^{+16.3}_{-16.3}$	$80382.2^{+25.3}_{-25.3}$	$80360.4_{-16.3}^{+16.3}$
MMHT2014	$80360.3^{+15.9}_{-15.9}$	$80386.2^{+23.9}_{-24.4}$	$80361.0^{+15.9}_{-15.9}$
MSHT20	$80358.9^{+13.0}_{-16.3}$	$80379.4^{+24.6}_{-25.1}$	$80356.3_{-14.6}^{+14.6}$
NNPDF3.1	$80344.7^{+15.6}_{-15.5}$	$80354.3^{+23.6}_{-23.7}$	$80345.0_{-15.5}^{+15.5}$
NNPDF4.0	$80342.2_{-15.3}^{+15.3}$	$80354.3_{-22.4}^{+22.3}$	$80342.9_{-15.3}^{+15.3}$

Comparison between PDF sets

Z p_T and rapidity at 8 TeV

Breakdown of relative uncertainties in the measured absolute double differential cross-sections.

Breakdown of relative uncertainties in the measured absolute differential crosssection in y.

Comparison with NNLO PDF sets.

PDF set	Total χ^2 / d.o.f.	χ^2 p-value	Pull on luminosity
$MSHT20aN^3LO$ [60]	13/8	0.11	1.2 ± 0.6
CT18A [61]	12/8	0.17	0.9 ± 0.7
MSHT20 [62]	10/8	0.26	0.9 ± 0.6
NNPDF4.0 [63]	30/8	0.0002	0.0 ± 0.2
ABMP16 [64]	30/8	0.0002	1.8 ± 0.4
HERAPDF2.0 [65]	22/8	0.005	-1.3 ± 0.8
ATLASpdf21 [66]	20/8	0.01	-1.1 ± 0.8

Extraction of α_s from p_T^Z at 8 TeV

Uncertainties on the determination of $\alpha_s(m_z)$

Experimental uncertainty	+0.00044	-0.00044
PDF uncertainty	+0.00051	-0.00051
Scale variations uncertainties	+0.00042	-0.00042
Matching to fixed order	0	-0.00008
Non-perturbative model	+0.00012	-0.00020
Flavour model	+0.00021	-0.00029
QED ISR	+0.00014	-0.00014
N4LL approximation	+0.00004	-0.00004
Total	+0.00084	-0.00088

Cross-check of N³LL fits using NNLO PDF sets.

PDF set	$\alpha_{\rm s}(m_Z)$	PDF uncertainty	$g [{\rm GeV}^2]$	$q [{\rm GeV}^4]$	χ^2/dof
MSHT20 [32]	0.11839	0.00040	0.44	-0.07	96.0 /69
NNPDF40 [78]	0.11779	0.00024	0.50	-0.08	116.0/69
CT18A [79]	0.11982	0.00050	0.36	-0.03	97.7 / 69
HERAPDF20 [63]	0.11890	0.00027	0.40	-0.04	132.3/69

Values of the χ^2 function for the determination of $\alpha_s(m_Z)$ from a combined fit of PDFs and non-perturbative parameters:

 0.11777 ± 0.00065

Variations of the upper end of the p_T^Z fit range have performed to test the stability of the results with respect to missing higher order corrections in the matching to fixed order.

p_T^W and p_T^Z at 5.02 TeV

p_T^W and p_T^Z at 13 TeV

p_T^W and p_T^Z: reco-level control plots @ 13 TeV

p_T^W and p_T^Z : combination and χ^2

• Statistical procedure: BLUE prescription with 4 iterations

Break-down of uncertainty for the combined W⁻→lv measurements at 5.02 TeV (left) and at 13 TeV (right).

Break-down of uncertainty for the combined Z →II measurements at 5.02 TeV (left) and at 13 TeV (right).