

Generation and characterisation of warm dense matter in the laboratory

D Riley *Centre for Plasma Physics Queen's University Belfast*

IUPAP Regional E-conference on physics Jan 18th -21st 2022

What is warm and dense?

• Strong coupling between particles

$$\Gamma_{ii} = \frac{\left(Ze\right)^2}{ak_bT_i} > 1$$

- Partial degeneracy $\mu/kT \approx 0.1-10$
- Partially ionized.

Warm dense matter occurs in planets

- Diamond layers in Uranus and Neptune? –(Ross, Nature 292 435 1981)
- Metallic water and the magnetic field in Uranus and Neptune? (Stevenson, Rep. Prog. Phys. 46, 555, 1983)
- Equation of state of H for Jupiter, how does it separate from He? (Nettelman *et al* Astrophys. J **683** 1217, 2008)
- The melting curve for Fe?

Experimental challenges in WDM

- Samples should be uniform- optical lasers intrinsically at a disadvantage.
- Scale-length long enough to be probed with spatial resolution helps.
- mm scale sample helps. If c_s is 10^4 m/s then 1mm scale suggests decompression in 100ns timescale- needs energy
- Timescale for evolution suited to being probed.
- Timescale also important for equilibration, melting etc.
- Access to sample for probing. Too cold and dense for emission spectroscopy or optical probing.

Generating warm dense matter

- Shock/ramp compression
 - Laser driven shocks >10Mbar¹
 - Z-pinches >5 Mbar²
 - Explosives³ (1-2Mbar typical but 100Mbar done) and gas guns >5Mbar⁴
- Volumetric heating
 - \circ Radiation from laser plasmas- solid density 50eV⁵
 - Particle beams (e.g. laser-plasma protons)⁶
 - \circ $\,$ X-ray and XUV lasers 7

¹L. Veeser and J. Solem, PRL **40**, 1390
 ² M. R. Martin *et* al, Phys. Plasmas **19**, 056310
 ³VE Fortov and VB Mintsev, PPCF **47** A65–A72
 ⁴ e.g. JM Brown *et al* J. Appl. Phys. **88** 5496

⁵SH Glenzer *et al*, PRL **90** 175002
⁶P.K. Patel, et al., Phys. Rev. Lett. **91** 125004.
⁷B Nagler *et al* Nat. Phys. **5** 693, 2009

Driving intense shocks can be done with lasers

Ramp compression can lead to lower temperature

Entropy generated in a shock

$$S_1 - S_0 = C_V \ln\left(\frac{P_1 V_1^{\gamma}}{P_0 V_0^{\gamma}}\right)$$

This means that for a given final pressure, the entropy is lower if we achieve it in steps

The focal spot issue for laser-driven shocks

- 100 mm can be driven at 10¹⁴ wcm⁻² for 1ns with 10J, from 5 cm diameter beam
- For 100 mm spot need 5mm elements for 1m focus- only ~75 elements in 5 cm beam
- For 500 mm spot need 1mm elements for 1m focus- 2500 elements.

Flyer plates are an option

A key issue is hydrodynamic stability- does the plate hit "flat" on? This is an issue for gas guns as well

Explosives can be used to compress-SKIP

120 mm

For example, Mochalov et al JETP 124, 505, 2017

Initial pressure >250 bar

Cut-away of cylindrical compression of D_2 , hard X-ray radiography through the shells was used. In spherical compressions 55Mbar at ~2eV was achieved.

Shocks driven reverberate in the shells to generate a quasi-isentropic compression.

Issues of course include how to probe with other diagnostics, practical issues for most labs in using explosive.

Radiography follows the compression

Using ion beams is possible

11

Diagnostics for shocked WDM- Optical Pyrometry

For T ~1eV should have strong optical emission. At high density close to BB shape <u>but</u> rapid decompression makes this problematical. A tranparent window can be used shock condition depend on impedence match as optical properties under extreme conditions need to be known.

An example from Fe at 4 Mbar shock- weak glow

Shocked target diagnostics-VISAR

Shocked target diagnostics- X-ray scattering

Resistivity

J. Chihara J. Phys F **17** p295, 1987 E Nardi, Phys. Rev. A **43** p1977, 1991

Glenzer and Redmer RMP, 81, 1625, 2009

An example – timescale plays a role

- Heating to above the equilibrium melt temperature is possible.
- Analysis by Luo and Ahrens suggests can be ~25% above equilibrium melt for Fe
- Depends on heating rate weakly. We are at about 10¹³ K/s
- Requires homogeneous nucleation
- Similar seen at 14g/cc

Sheng-Nian Luo *et al*, Phys. Rev. B **68**, 134206, 2003

Radiative heating with laser-plasmas- mm scale possible

Hot outer plasma at high Z may obstruct diagnostics

Omega laser 351nm **15KJ** 30 beams

Radiative heating with laser-plasmas- thin target possible

Key point: Expansion time for 400nm foil ~50ps: probe <1ps

Laser produced protons-limitations exist

MeV electrons escape and pull protons from contaminants on rear surface. Conversion <10% into <50MeV protons.

Very hot plasma with hard X-rays generated.

Beam of protons diverges rapidly.

Beam diverges with 0.5 radian. Has been used to create WDM. Patel *et al* PRL **91** 125004 2003

Ion beams can have advantages in volumetric heating

A. Kozyreva, M. Basko, F. Rosmej, T. Schlegel, A. Tauschwitz, D. Hofffmann, PRE **68**, 056406 (2003)

Some facilities for mm sized WDM samples

- NIF (1.8MJ energy at 351nm)
- Omega laser at Rochester LLE (30KJ at 351nm)
- GEKKO laser FIREX II (50KJ 527nm)
- Orion (5kJ at 351nm)
- Z Sandia (>20MA)
- Magpie Z-pinch (>1MA)
- FAIR (40kJ) assuming 10¹² U ions at 1Gev/u

Conclusions

- Several methods exist for WDM creation
- Diagnostics based on bulk and microscopic properties are complementary
- Challenges in measuring temperature
- Large ion beam facilities offer some advantages in both shock drive and volumetric heating
 - Reduction of radiative pre-heat at strong shocks
 - Volume heating of mid-higher Z materials

Why WDM and what are the problems?--SKIP

- Why is WDM important?
- What are challenges?
- Discuss experiments and diagnostics together
- Facilities and future facilities
- Conclusions

Characteristics of WDM-SKIP

• Strong coupling between particles

$$\Gamma_{ii} = \frac{\left(Ze\right)^2}{ak_b T_i} > 1$$

- Partial degeneracy $E_F/kT \sim 1$
- Partially ionised

The challenge of diagnostics- **SKIP**

- Optical emission does not come from core only surface
- Peak black-body emission would be ~30eV for 10eV.
- Soft X-ray regime hard to work in.
- Optical probing not useful.
- Small spatial and short temporal scales.
- Temperature is a particular issue.