

Effects of Exchange Interaction on Spin Acoustic Waves with Separated Spin Evolution in Spin Polarized Quantum Plasma

Zakia Rahim

Theoretical Plasma Physics Group, Department of Physics, University of Peshawar, Peshawar, Pakistan

Outline

***Introduction**

Motivation

- Mathematical Modelling
- Linear Dispersion Relation
- **Spin Magneto-acoustic Waves**
- Conclusions

Quantum Plasma

Quantum effects appear when

$$R_{in} \approx \lambda_B = h/\sqrt{2\pi kTe}$$

Degeneracy parameter:

$$\chi \cong \left(\frac{T_F}{T}\right)^{\frac{3}{2}} = n\lambda_B^3$$

 $n_{_{B}}\lambda_{_{B}}^{3} \geq 1$

This condition corresponds to $T < T_F$ T_F Fermi temperature.

Screening length:

$$\lambda_F = \frac{v_F}{\omega_p}$$

Quantum coupling parameter: (E_{pot}/E_F)

$$\Gamma^{\mathcal{Q}} \propto n^{-\frac{1}{3}}$$

Introduction

• Quantum Fermi Pressure

$$P_F = \frac{(3\pi^2)^{2/3}\hbar^2 n_s^{5/3}}{5m_s}$$

$$P_{spin} = \frac{v_{3D} (3\pi^2)^{2/3} \hbar^2 n_s^{5/3}}{5m_s}$$

Particle dispersion/spreading

$$V_B = \frac{\Gamma_D \hbar^2}{2m_s} \left(\frac{\nabla^2 \sqrt{n_s}}{\sqrt{n_s}} \right) \qquad \qquad \Gamma_D = \frac{D-2}{3D}$$

• Spin Force
$$F_{spin} = \frac{2\gamma_e}{\hbar} \nabla \left(\vec{S} \cdot \vec{B} \right)$$

• Exchange Potential: $V_{Xe\downarrow} = 0.985 \zeta_{3D} e^2 n_{e\downarrow}^{1/3}$ $\zeta_{3D} = (1 + \kappa)^{4/3} - (1 - \kappa)^{4/3}$

 $1eV \cong 10^4 K$

105 NDa Inal 104 Partially ionized 1 quantum plasmas 103 Temperature, eV Magnet fusion ICF Quantum Lighting 102 sea of electrons 101 Lightning Neutron 100 stars Planet cores Dwarf 10-1 Semiconductors stars 300K Metals 10-2 a secol a secol 1012 1015 1018 1021 1027 1024 Dusty Materials ← Plasmas Quantum Electron density, 1/ccm Processing Plasmas Fermi plasmas in traps UTA_1102_05

Collisional Low Temperature Plasmas Technology

Spray Coatings

5

Motivations

Ref: https://doi.org/10.1007/s10948-020-05545-8

Motivations

Plasma Inertial Confinement Fusion and Spin Effects

Ref: <u>http://dx.doi.org/10.1088/0029-5515/52/10/103011</u>; G. Bruhaug and A. Kish 2021

Low Frequency Modes

Frequency Range:
$$|\partial_t| \ll \omega_{pe}$$
, $\omega \ll \Omega_{cj}$, $\Omega_{cj} = \frac{eB_0}{m_j c}$; $T_i, T_e, T_{Fi} \ll T_{Fe}$.

• For low frequency the **ion motion** should be taken into account.

Linear Structures

- Ion acoustic, Electrostatic,
- Electromagnetic, Magnetosonic, Alfven waves

Ref: Francis F. Chen

Mathematical Modelling

Quantum Magneto-Hydrodynamic Separated Spin Evolution (QMHD-SSE) model for macroscopic variable n (number density), v (velocity) and spin vector S of the lth specie:

$$m_{l}n_{l}\frac{d\vec{v}_{l}}{dt} = n_{l}q_{l}\left(\vec{E} + \frac{1}{c}\vec{v}_{l} \times \vec{B}\right) - \nabla P_{l} + n_{l}\nabla V_{B} + n_{l}\nabla V_{x} + F_{spin}$$

$$\frac{\partial}{\partial t}n_{l} + \nabla (n_{l}\vec{v}_{l}) = 0$$

$$\frac{d\vec{S}}{dt} = \frac{2\gamma_{e}}{\hbar}(\vec{S} \times \vec{B})$$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial\vec{B}}{\partial t}$$

$$\vec{\nabla} \times \vec{B} = \frac{1}{c^{2}}\frac{\partial\vec{E}}{\partial t} + \frac{4\pi}{c}(\vec{j}_{p} + c\vec{j}_{m})$$

$$\vec{\nabla} \cdot \vec{E} = 4\pi \sum_{l} q_{l}n_{l}$$

$$\Rightarrow \text{ For high terms}$$

$$\begin{aligned} \frac{d}{dt} &= \frac{\partial}{\partial t} + \left(\vec{v}_l \cdot \vec{\nabla}\right) \\ \vec{J}_p &= \sum_l q_l n_l \, \vec{v}_l \\ \vec{J}_m &= \vec{\nabla} \times \vec{M}, \qquad and \quad \vec{M} = \gamma_e \vec{S} \end{aligned}$$

For high densities /low temperature: only electrons above Fermi level contribute to magnetization; magnetization reduces through the Brillion function

 $\mathbf{M} = \mu_B n_e Tanh(\mu_B B / T_e) \hat{B}$

For high temperature M-> 0

General dispersion relation in spin polarized plasma

- The external magnetic field $B_0 = B_0 [\cos\theta \hat{y} + \sin\theta \hat{z}]$ and electric field $E_1 = E_1 \hat{x}$ wave vector y-axis, the linear excitations δf are proportional to $F_A e^{i(ky-\omega t)}$;
- General Dispersion Relation

$$\begin{split} \omega^{2} - c^{2}k^{2} &= \frac{\omega_{pi}^{2}\omega^{2}\left(\omega^{2} - k^{2}v_{Ti}^{2}\right)}{\omega^{2}\left(\omega^{2} - k^{2}v_{Ti}^{2}\right) - \Omega_{i}^{2}\left(\omega^{2} - k^{2}v_{Ti}^{2}\cos^{2}\theta\right)} + \frac{\omega_{pe}^{2}\delta_{\uparrow}\omega^{2}\left(\omega^{2} - Q_{e\uparrow}k^{2}\right)}{\omega^{2}\left(\omega^{2} - k^{2}Q_{e\uparrow}\right) - \Omega_{e}^{2}\left(\omega^{2} - Q_{e\uparrow}k^{2}\cos^{2}\theta\right)} \left(1 + \frac{\Omega_{e}\mu_{e}ck^{2}\sin\theta^{2}}{e\left(\omega^{2} - Q_{e\uparrow}k^{2}\cos^{2}\theta\right)} + \frac{\omega_{pe}^{2}\delta_{\downarrow}\omega^{2}\left(\omega^{2} - Q_{e\downarrow}k^{2}\right)}{\omega^{2}\left(\omega^{2} - k^{2}Q_{e\downarrow}\right) - \Omega_{e}^{2}\left(\omega^{2} - Q_{e\downarrow}k^{2}\cos^{2}\theta\right)} \left(1 - \frac{\Omega_{e}\mu_{e}ck^{2}\sin\theta^{2}}{e\left(\omega^{2} - Q_{e\downarrow}k^{2}\right)}\right) - \frac{\omega_{pe}^{2}\hbar^{2}k^{2}\sin\theta}{4m_{e}\varepsilon_{Fe}}. \end{split}$$

$$Q_{e\uparrow} = \frac{(2\delta_{\uparrow})^{2/3}v_{Fe}^2}{3v_A^2} + \frac{H_e^2k^2}{36}, \qquad Q_{e\downarrow} = \frac{(2\delta_{\downarrow})^{2/3}v_{Fe}^2}{3v_A^2} + \frac{H_e^2k^2}{36} - \frac{0.985e^2\zeta_{3D}\delta_{\downarrow}^{1/3}n_0^{1/3}}{3m_e v_A^2}. \qquad H_e = \hbar\Omega_i/m_e v_A^2$$

$$\delta_{\uparrow} = n_{0e\uparrow}/n_{0i} = (1+\kappa)/2, \\ \delta_{\downarrow} = n_{0e\downarrow}/n_{0i} = (1-\kappa)/2 \qquad \qquad \kappa = \frac{n_{e\uparrow} - n_{e\downarrow}}{n_{e\uparrow} + n_{e\downarrow}}, \qquad \kappa \in (0 \to 1)$$

Ζ

χ

В

Parallel Propagation

For θ = 0, the mode is Alfvén wave

$$\omega^2 - c^2 k^2 = \frac{\omega_{pi}^2 \omega^2}{\omega^2 - \Omega_i^2} + \frac{\omega_{pe}^2 \omega^2}{\omega^2 - \Omega_e^2}.$$

In low-frequency limit, the dispersion relation is $\omega = v_A k$, which is the same result as for a classical Alfvén propagation mode

Perpendicular Propagation

• Dispersion relation reduces to Magnetosonic mode affected by quantum parameters; in low frequency limit such as;

 $\omega^2 \ll \Omega_i^2, \Omega_e^2, \omega^2 \ll k^2 Q_s$ and $\omega^2 \gg k^2 v_{Ti}^2$,

$$\omega^2 - \frac{c^2}{v_A^2} k^2 = -\frac{\omega_{pe}^2 \hbar^2 k^2}{4m_e^2 v_{Fe}^2} - \frac{c^2 \omega^2}{v_A^2} + \frac{\omega_{pe}^2 k^2 \delta_{\uparrow}}{\Omega_e^2} \left(Q_{e\uparrow} - \frac{\Omega_e \mu_e c}{e v_A^2} \right) + \frac{\omega_{pe}^2 k^2 \delta_{\downarrow}}{\Omega_e^2} \left(Q_{e\downarrow} + \frac{\Omega_e \mu_e c}{e v_A^2} \right)$$

Obliquely propagating waves

In low frequency range dispersion relation reduces to 3rd order equation.

$$\omega^2 - \frac{c^2}{v_A^2}k^2 = -\frac{\omega_{pe}^2\hbar^2k^2\sin\theta}{4m_e^2v_{Fe}^2} - \frac{c^2\omega^2}{v_A^2} + \frac{\omega_{pe}^2k^2\delta_{\uparrow}\omega^2}{\Omega_e^2(\omega^2 - k^2Q_{e\uparrow}\cos^2\theta)}\left(Q_{e\uparrow} - \frac{\Omega_e\mu_ec\sin\theta^2}{ev_A^2}\right) + \frac{\omega_{pe}^2\omega^2k^2\delta_{\downarrow}}{\Omega_e^2(\omega^2 - k^2Q_{e\downarrow}\cos^2\theta)}\left(Q_{e\downarrow} + \frac{\Omega_e\mu_ec\sin\theta^2}{ev_A^2}\right)$$

Effect of obliqueness on frequency

Obliquely propagating modes angular frequency ω against k at different angle (θ), (a) for θ =60°, (b) for θ =70° at n₀=10³⁰ cm⁻³, B₀=10¹⁴G, κ =0.6.

Effects of spin polarization density ratio on frequency

Effects of obliqueness on frequency

Angular frequency ω of SMAW against k for different (a) spin polarization (b) angle (in degrees), Chosen values in plots are n₀= 10³⁰ cm⁻³, B₀=10¹⁴G, κ =0.6.

Effects of number density on frequency

Effects of magnetic field strength on frequency

Angular frequency ω of SMAW against k for different (c) density (d) magnetic field, Chosen values in plots are n₀= 10³⁰ cm⁻³, B₀=10¹⁴G, κ =0.7, θ =60.

- > The contribution of spin and exchange quantum effects in our model change the frequency of waves.
- > The spin term vanishes for parallel propagation, and we have only Alfven waves.
- The perpendicular propagation mode at large wavelength limit is strongly influenced by exchange, spin, and other quantum effects.
- We have observed that a large angle of propagation and density enhance the spin magnetoacoustic wave frequency.
- ➢ We have observed that in high spin-polarized plasma, the frequency of the obliquely propagating waves decreases and also low values are noticed for maximum magnetic field strength.
- > High spin magneto-acoustic wave frequency is noticed in low spin polarized plasma.

Thank you for your time and attention