Semiconductor Detectors in Particle Physics

Imran Awan

National Centre for Physics, Islamabad

January 20, 2022

Regional E-conference on Physics

The **detection and measurement** of the **momenta** of **charged particles** is an essential aspect of any large particle physics experiment to study the physics processes.

A charged particle travels through a certain medium and ionize atoms. By detecting this ionisation, it is possible to reconstruct the trajectory of a charged particle commonly knows as the **Tracking**.

Tracking in Particle Physics

- Tracking is the act of measuring the direction and magnitude of **charged particles momenta**
- Use constant magnetic field *B* to curve particle trajectories in helixes, where particle momentum
 p measured from radius of curvature *r*

$$r = \frac{P}{qB}$$

Important to combine tracks and find vertices

Tracking Technologies

Bubble chambers ~1960s

• Many bubbles along path; take stereo photos; measure trajectory by manual scanning of film

Gas detectors >1970s

- A type of electronic detector, can digitally record "hits" at high rate without human intervention
- Software links hits together into helix sections called "tracks"
- Accuracy as good as ${\sim}200~\mu m$ per hit
- Used in CMS muon system

Silicon detectors (>1990s)

- Accuracy ${\sim}10~\mu\text{m}$ per hit and very radiation-hard but also more expensive
- Used in the CMS central tracker system

Why Silicon?

Advantages:

- large signal in thin layers (~24k e in 300 μm)
- fast signal: O(10 ns)
- no recovery time
- very good position resolution
- light: low Z, X0 = 9.36 cm

Disadvantages:

- needs lots of auxiliary electronics, services
- high channel density that leads to more power dissipation
- susceptible to radiation damage

Silicon Properties

Silicon is a group IV element -> 4
 valence electrons that form covalent bonds

- Si is a semiconductor (isolator at T~ 0K and conductance between metal and insulator at RT)
- can form single crystals (111 or 100 orientation)
- diamond cubic lattice (2 interleaved fcc sub-lattices)
- one of the most abundant
 elements in earth crust mostly in
 the form of SiO₂ aka sand

© Encyclopædia Britannica, Inc.

··· Conduction electron

Band Gap

- due to the regular lattice of the Si atoms in a single crystal, energy levels form
 bands: valence-band & conduction-band
- at lower temperatures, the valence band is filled and the conduction band empty
- electrons in the v-band can be (thermally)
 excited to the c-band leaving empty bonds
 (holes)- the band-gap is 1.12 eV
- E_f denotes the Fermi-level, where the occupation of states = 50%
- conductivity behavior can be altered by introducing additional levels in the band gap -> "doping"

Doping

typical **dopants** are:

• group III elements like Boron with 3 valence electrons, leaving a "hole" acceptor level, p-type silicon

group V elements like Phosphorous with 5 valence
 electrons -> donor level, n-type silicon

 additional levels increase probability of electron excitation thus changing the Conductivity

• **doping shifts the Fermi level** in the band-gap

• doping changes the electrical conductivity σ & resistivity ρ :

 $e_0 \mu n_A$

The PN Junction - I

- if **p- and n- doped materials** are **brought in contact**, the majority carriers start diffusing in the other region building up a potential barrier
- leads to creation of a space-charge region (electric field) that stops further diffusion
- leads to a stable, charge carrier free region -> depletion region

E

The PN Junction - II

- applying an external voltage can alter the behavior of the depleted region depending on the polarity:
- V_{ext} in forward direction decreases the potential barrier and thus the width of the depleted region
 -> diffusion currents drastically increase
- V_{ext} in reverse direction increases the width of the depleted region -> very small leakage current

width W of the depleted region:

$$V = \sqrt{\frac{2\epsilon_0\epsilon_{\rm F}}{e_0}(V_0 - V)(\frac{1}{N_d} + \frac{1}{N_a})}$$

ε ... dielectric constants
 N_{a/d} ... acceptor/donor concentrations
 V₀ ... contact voltage
 V ... external voltage

eo ... elementary charge

The PN Junction - III

- applying an external voltage can alter the behaviour of the depleted region depending on the polarity:
- V_{ext} in forward direction decreases the potential barrier and thus the with of the depleted region -> diffusion currents drastically increase
- V_{ext} in reverse direction increases the width of the depleted region -> very small leakage current until breakdown (avalanche effect in E-field)

width W of the depleted region:

$$W \approx \sqrt{2\epsilon_0 \epsilon_r \mu \rho |V|} \ for \ V >> V_0$$

- ε ... dielectric constants
- ρ... resistivity
- µ ... charge carrier mobility
- V ... external voltage

PN Junction of a Detector

- use one thin but highly doped region $(O(10^{15}))$ electrode
- one thick region (O(10¹²)) bulk
- width W of depleted region:
- $V_{ext}=0V$: Wp = 0.02µm, Wn = 23µm
- V_{ext} , reverse = 100V: Wp = 0.4µm, Wn = 363µm

Possible to use: P+ contact in n bulk N+ contact in p bulk

Imran Awan - Regional E-conference on Physics

Detection Principle

- the depleted region (free of charge carriers) acts in a similar manner to a gaseous detector
- instead of e⁻-ion pairs, electron hole pairs are created by traversing particles (an e⁻ from the valence band is excited to the conduction band leaving a hole)
- e⁻ h⁺ pairs drift in the E-field inducing a signal at the contacts
- the required average energy loss for the creation of e/h pair is only 3.6eV (~30eV for gases)→ very thin produce high signals

No free charge is present in the depleted region to extinguish the generated electron-hole pair

Imran Awan - Regional E-conference on Physics

Signal Vs intrinsic charge carriers

- ionization E in intrinsic silicon $E_0=3.62 \text{ eV}$
- average dE/dx in Si: 3.87 MeV/cm
- intrinsic charge carrier density @ T=300K: $n_i = 1.45 \times 10^{10} \text{ cm}^{-3}$
- created e^-h^+ pairs for detector with d= 300µm and A=1cm²:

$$\frac{dE/dx \times d}{I_0} = \frac{3.87 \times 10^6 eV/cm 0.03 cm}{3.62 eV} \approx 3.2 \times 10^4$$

• thermally generated e-h+ pairs in undepleted detector:

$$n_i dA = 1.45 \times 10^{10} \text{ cm}^{-3} \times 0.03 \text{ cm} \times 1 \text{ cm}^2 \approx 4.35 \times 10^8$$

- signal drowned in thermally generated "noise" by 4 orders of magnitude
- absolutely vital to operate the detector depleted

NCP is one of the Module Assembly and sensor qualification centre.

A dedicated lab for semiconductor detector technology has been developed

CMS Outer Tracker 2S Module

The 2S modules are built from two silicon strip sensors with 1.8 mm or 4 mm spacing, depending on the region in the CMS detector. The active area of approximately 92 cm² is read out by 16 CBC3 front-end chips forming hit pairs from the two sensors. The power consumption is 5.0 W for the front-end electronics and 1.0 W for the sensors at -20 °C.

Pair of hits = Stubs (Hit Position + Bend Info)
2 Hits per Module

Module will have on board pT discrimination:

- Signals from two closely spaced sensors are correlated
- Exploit strong magnetic field for local pT measurement
- Local rejection of low pT tracks to minimize data volume

2S Module Silicon Sensor

p -implants below

bias and guard ring

aluminium backplane

- Dimension of Sensor 102.7 x 94.183 mm •
- Thickness of Sensor 320 μm ٠
- Number of Strips 2032 (2 x 1016) ٠
- Length of Single Strip 5cm ٠
- Strip Pitch 90µm ٠
- Standard Wafer Material Float Zone (FZ)

N in P sensor for phase-2 **HL-LHC i.e., bulk material** is p-type with n-implants

p -strips

oxide

n⁺-layer-

SiO₂ and Si₃N₄)

Electrical Characterization of Silicon Sensors

Sensor Qualification Setup at NCP

Software has been developed locally to automatize the electrical characterization

Imran Awan - Regional E-conference on Physics

CV and IV measurements

The current increases while capacitance decreases linearly with the width of PN junction until the sensor is fully depleted. The kinks determines the depletion voltage.

Dedicated Fixtures for Each Assembly Step

Kapton Strips Positioning

Kapton Strips Gluing

Metrology Setup

Glue Transfer Plate

Sensors Sandwich Assembly

Glue curing for 24 hours

Dedicated Fixtures for Each Assembly Step

100-micron separators

Alignment of sensor strips with the bond pads of Front-End Hybrid

Weight bars for uniformity of the glue and curing

Glue Preparation and Dispensing Setup

- Glue is mixed in vacuum with controlled speed (SmartMix X2)
- The glue dispenser can be programmed for speed and quantity for controlled dispensing of glues (Precifluid)
- 3-axis robot can be programmed to dispense the glue at desired location on the modules
- The glue is passed through an independent vacuum chamber for the removal of air before using for the module assembly

Imran Awan - Regional I

Locally developed 3-axis Robot

Glue Dispenser

Wire Bonding and Encapsulation

Wire bonds on Silicon Sensor

- Delvotec wire bonder model G5 64000
- Speed of 2 to 3 wires per second (depending on application)
- Fine wire Ø 25 μm (Al/Si Alloy)
- 4064 wire bonds / Module
- 10 wire bonds / HV tail

Sylgaurd 186 silicon elastomer Imran / is used to protect the wires

Wire bonds with height of < 500 µm is made between HV tail bond pad and sensor backside for biasing of the sensor

22/12/2020

Top Sensor

Tracker 2S Outer Tracker Module Assembled at NCP

1st Silicon Dummy Module Without CBC chips

2nd Silicon Functional Module 8CBC2 Front End Hybrids

3rd Silicon Functional Module 8CBC3 Front End Hybrids

> ΔX = -12.9 μm ΔY = -4.0 μm Angle = -21.9 μrad

Thank You !