Development of radiation hard pixel detectors

Heinz Pernegger / CERN EP Department

With many thanks to colleagues who kindly provided material N. Cartiglia, P. Collins, A. Macchiolo, M. Moll, F. Reidt, P. Riedler, C. Solans, W. Snoeys

High Luminosity - LHC

HL-LHC (High Luminosity LHC)

- Collisions to start after Long Shutdown 3 (2025-2027)
- ~4000 fb⁻¹ Integrated luminosity to ATLAS/CMS over ten years
- 200 (mean number of) interactions per bunch crossing.
 - Original design for 25 interactions per bunch crossing
- Major upgrades of current silicon trackers for ATLAS & CMS in HL-LHC Phase 2 Upgrade projects as well as ALICE and LHCb in present shutdown

Challenges for the silicon detectors

- Increased luminosity requires
 - Higher hit-rate capability
 - Higher segmentation
 - Higher radiation hardness
 - Lighter detectors
- Radiation hardness improvement compared to present trackers
 - factor 10 (HL-LHC) to factor 100 (FCC)

The environment at HL-LHC

- Radiation level, hit rates and bunch structure for silicon detector dominate the development of sensors and Frontend electronics
 - 25ns BC
 - L1 trigger rate (~1MHz)

- Strip layers (r > 30cm)
 - NIEL ~ 10¹⁴ n_{eq}/cm²
 - TID ~ 10Mrad
 - Larger area O(100m²)
- Outer pixel layers (10<r<30cm)
 - NIEL ~ 10¹⁵ n_{eq}/cm²
 - TID ~ 50Mrad
 - Larger area O(10m²)
- Inner layers (r<10)
 - NIEL ~ 5x10¹⁵ to 10¹⁶ n_{eq}/cm²
 - TID ~ 1Grad
 - Smaller area O(1m²)

Beyond LHC: FCC/hh

FCC-hh slides, CDR

H. Pernegger/CERN February 2022

CERN

- 4T, 10m solenoid, unshielded
- Forward solenoids, unshielded
- Silicon tracker
- Barrel ECAL LAr
- Barrel HCAL Fe/Scint
- Endcap ECAL/HCAL LAr
- Forward ECAL/HCAL LAr

50 m long, 20 m diameter

EIRO Forum @ CERN

5

Tracker at FCC/hh

Tracker radius 1.6 m, half-length 16 m, initial baseline hit position resolution 7–9 μ m in R ϕ

H. Pernegger/CERN February 2022

CERN

Hybrid pixel sensors

Special sensor for e.g. extreme radiation hardness, timing

Dedicated FE-chip eg. for very high hit rates, digital functionality (memory, TDC,...)

- Front-end chip
 - Depending on application we need specialized FE-ASIC
 - Complexity of designs are driven by experimental needs
 - Increasing functionality on chip drives the development towards 65nm and smaller node size CMOS processes

Sensor developments

- For very high radiation and track density (e.g. 3D sensors, active edge planar)
- Sensors for 4D tracking, i.e. spatial and time information (e.g. pixel sensors with trench electrodes)

Future Trackers at ATLAS and CMS

Sensor active thickness 100 - 300 μ m

CERN-LHCC-2017-021 ; ATLAS-TDR-030

Einsweiler, Kevin; Pontecorvo, Ludovico

Technical Design Report for the ATLAS Inner Tracker Pixel Detector

Collaboration, ATLAS

CERN. Geneva. The LHC experiments Committee ; LHCC

(technical design report)

k_einsweiler@lbl.gov on 23 Sep 2017

- Detectors and Experimental Techniques
- This is a placeholder for the final document.

All n-in-p sensors *inside* with different thicknesses

CMS Next generation Pixel Detectors Many commonalities ATLAS – CMS TEPX 4 barrel layers lead to RD53 Developments "Classical" hybrid pixel detectors with bump-bonding THIN Planar n-on-p or 3D detectors (inner layers) TBPX Common R&D on chip RD53A-65nm **TSMC** TFPX **ATLAS** Modules: Single to Quads chip arrangments Common design of pixel FE-IC 5 barrel layers implemented with different matrix size and FE design (TSMC 65nm) **RD53** Sensor 50 x 50 µm pitch Single analog Sensor 25x100 µm pitch Front End ahove Serial Powering (part of **RD53**) Digital "sea" Bump bond location Both detectors up to η =4 Analog Surface: 2*CMS < 1*ATLAS "island"

Sensors for hybrid detectors ATLAS/CMS

ATLAS ITk 3D

- 3D and Planar sensors developed to radiation hardness of >10¹⁶ n_{eq}/cm² for HL-LHC on 4", 6", 8" wafer
 - Further development focuses on
 - Better lithography for smaller pixels on 3D
 - Optimizing active edge on planar
 - Move to 8" wafers

H. Pernegger/CERN February 2022

PixelVelo and Upstream Tracker for LHCb in LS2

in very high occupancy and pile up conditions combinatorial complexity and fake tracks Pile-up mitigated by granularity, high readout speed and trigger innovations (timing will be for Upgrade II)

Maintain Physics Performance

Operate with detector elements exposed to very high radiation doses Radiation hardness needed for all subdetectors

Cope with tremendous DAQ and data processing challenges

VeloPix for LHCb Upgrade 1

Derived from Timepix3 and dedicated to LHCb.

	Timepix3 (2013)	VeloPix (2016)		
Pixel arrangement	256 x 256			
Pixel size	55 x 55 μm²			
Peak hit rate	80 Mhits/s/ASIC	800 Mhits/s/ASIC 50 khits/s/pixel		
Readout type	Continuous, trigger-less, TOT	Continuous, trigger-less, binary		
Timing resolution/ range	1.5625 ns, 18 bits	25 ns, 9 bits		
Total Power consumption	<1.5 W	< 3 W		
Radiation hardness		400 Mrad, SEU tolerant		
Sensor type	Various, e- and h+ collection	Planar silicon, e- collection		
Max. data rate	5.12 Gbps	20.48 Gbps		
Technology	IBM 130 nm CMOS	TSMC 130 nm CMOS		

H. Pernegger/CERN February 2022

Timing for tracking

Need sub-nanosecond track time to suppress background in environments with large pile-up (HL-LHC, FCC) \rightarrow **4D tracking**

Separate timing layers with coarser granularity → timing for reconstructed tracks (e.g. HL-LHC upgrades ~30 ps) Timing within pixel layers
→ time info for pat rec
(e.g. LHCb Upgrade II 20-200 ps, depending on pixel size, radiation)

N. Cartiglia / INFN Torino

→ Trade-off between time resolution and pixel size / layer thickness
 → FCChh needs track timing at 5 ps up to 6x10¹⁷ n_{eq}/cm² fluences

H. Pernegger/CERN February 2022

LGAD timing sensors

Low Gain Avalanche Detectors (LGAD): Multiplication of charges (~10-100x) in thin gain layer \rightarrow fast rise time, increased S/N

- Strong development through RD50 collaboration and ATLAS HGTD/CMS timing layer projects
- Several vendors: CNM, FBK, HPK
- Reached ~30 ps for few mm² size sensors
 - → used for HL-ATLAS & CMS timing layers
- Limiting factors for time resolution:
 - Weighting **field uniformity** → favors larger pixels
 - Radiation effects \rightarrow ok up to ~10¹⁵, mitigation measures under study for higher fluences
 - r/o electronics + clock distribution → IC work package
- R&D to achieve radiation hardness
 - Variation in doping to limit gain loss after irradiation
- RD for larger fill factors (minimal gap between electrodes) and concepts for sensors without gap

LGAD: Gain layer engineering

Defect Engineering of the gain layer

- Carbon co-implantation mitigates the gain loss after irradiation
- Replacing Boron by Gallium did not improve the radiation hardness

Modification of the gain layer profile

- Narrower **Boron doping profiles** with high concentration peak (Low Thermal Diffusion) are less prone to be inactivated
- Deep Gain Layer improves electric field after acceptor removal (see N. Cartiglia, Hiroshima 2019 HST12)

CMS and ATLAS timing layers

Dedicated FE-chips bump-bonded to LGAD sensors

Monolithic Pixel Sensors for Future Trackers

	RHIC STAR	LHC - ALICE ITS	CLIC	HL-LHC Outer Pixel	HL-LHC Inner Pixel	FCC pp
NIEL [n _{eq} /cm²]	10 ¹²	10 ¹³	<10 ¹²	10 ¹⁵	10 ¹⁶	10 ¹⁵⁻ 10 ¹⁷
TID	0.2Mrad	<3Mrad	<1Mrad	80 Mrad	2x500Mrad	>1Grad
Hit rate [MHz/cm ²]	0.4	10	<0.3	100-200	2000	200-20000

Alpide Sensor

Monopix & AtlasPix & Malta Sensor

Advances in commercial CMOS technologies combined with dedicated designs allowed significant progress S in areas like radiation hardness, response time, hit rates **Strong interest for R&D to fully exploit potential of MAPS in future Trackers**

- High granularity, Low material budget and power, Large area at reduced cost (cf hybrid)
- CMOS foundries offer substantial processing power to enable significant performance gains

ALICE Inner Tracking System Upgrade at LHC

A Large Ion Collider Experiment

F. Reidt / CERN EP - Vertex 2021

H. Pernegger/CERN February 2022

MAPS for ALICE ITS2 : ALPIDE sensor

A Large Ion Collider Experiment

Pixel chip characteristics

~_{28 μm} collection electrode

2 x 2 pixel volume

Artistic view of a SEM picture of ALPIDE cross section

- Based on the ALPIDE Monolithic Active Pixel Sensor
 - In-pixel amplification, shaping, discrimination and Multiple-Event Buffers (MEB)
 - In-matrix data sparsification
 - High detection efficiency: > 99% and low fake-hit rate: << 10⁻⁶/pixel/event
 - Radiation tolerant: > 270 krad Total Ionising Dose (TID), > 1.7×10¹² 1 MeV/n_{eq} Non-Ionising Energy Loss (NIEL)
 - Low power: < 40mW / cm²

	Previous ITS	New ITS2
Distance to IP (mm)	39	22
X ₀ (innermost layer) (%)	~ 1.14	~ 0.35
Pixel pitch (µm²)	50 x 425	27 x 29
Readout rate (kHz)	1	100
Spatial resolution $(r\varphi \times z) (\mu m^2)$	11 x 100	5 x 5

Improved resolution, less material, faster readout

F. Reidt / CERN EP - Vertex 2021

0.3 pJ / bit

C_{in} ≈ 5 fF

ALICE ITS Layer Assembly

ITS Outer Barrel surrounding the beam pipe, MFT in the back

ITS2 assembled and installed in ALICE experiment

ITS Inner Barrel Bottom and Outer Barrel

H. Pernegger/CERN February 2022

F. Reidt / CERN EP - Vertex 2021

Towards radiation hard MAPS...

...there are several obstacles to overcome:

Different CMOS sensor designs

- Purse different design approaches for optimal performance
 - Large electrodes

charge signal CMOS electronics n+ pw nw n+ deep pwell p - substrate

Small electrodes

 "Burried" electrodes (SOI)

- Electronics in collection well
- No or little low field regions
- Short drift path for high radiation hardness
- Large(r) sensor capacitance (dpw/dnw) ->higher noise and slower @ given pwr
- Potential cross talk between digital and analog section

- Electronics outside collection well
- Small capacitance for high SNR and fast signals
- Separate analog and digital electronics
- Large drift path -> need process modification to usual CMOS processes for radiation hardness

- Electronics and sensor in separate layer
- Can use thick or thin high resistivity material and HV (>200V)
- Special design/ processing to overcome radiation induced charge up of oxides

H. Pernegger/CERN February 2022

MALTA & TJ MonoPix – Novel depleted CMOS

sensors with small electrodes

- Produced in Tower 180nm imaging process ~ 36um pixel pitch
- The ATLAS "MALTA" and "MonoPix" chips for high hit rate suitable for HL-LHC ppcollisions
 - Radiation hard to >10¹⁵ n/cm² & Shaping time 25ns (BC = 25ns)
 - MALTA: Asynchronous readout architecture for high hit rates and fast signal response, 36um pitch 512x512 matrix, ~2x2 cm2
 - MonoPix: Synchronous Column drain readout architecture, 33um pitch

- Produced on 25um epitaxial and 300um HR Cz substrate to allow different applications (charge particles and soft X-ray)
- Cluster size increases with substrate voltage
 - Maximum at ~1.9 at 50 V at 120 e-
- Time resolution ~2ns
- Efficiency after 2x10¹⁵ n/cm² better than 98% at 50 V bias at 120 e-

Pixel PosX

EP R&D TPSCo 65nm ISC CMOS imaging technology

Explore 65nm imaging process for future MAPS

- high density than 180nm allows smaller pixels or more functionality
- 300mm wafer allows larger sensor if stitching is used
- First MLR1 run: significant contributions from many groups and the ALICE ITS3 collaboration:
 - 55 test chips: IPHC: rolling shutter larger matrices, DESY: pixel test structure, RAL: LVDS/CML receiver/driver, NIKHEF: bandgap, T-sensor, VCO, CPPM: ring-oscillators, Yonsei: amplifier structures, CERN Transistor test structures, analog pixel test matrices (together with IPHC), digital pixel test matrix (DPTS) (32x32), pad structure for assembly testing.
 - Measurements:
 - analog front end, sensor process optimization (fully efficient operation in test beam) and building blocks proven.
 - First characterization of SEU cross-section of registers
 - No showstoppers on transistors and other X-ray irradiation measurements.

Looking towards the future

There are very challenging targets ahead at HL-LHC and future collider experiments for new silicon detectors

Radiation hard, thin and small pixel Vertex layers for very high hit-rates at innermost layers Merge tracking and timing: how about a 10x10µm² pixel with 10ps timing? A dream for reconstruction

Ultra-thin detectors: reduced multiple scattering to maybe 1/10th of today?

CERN

Summary

- The required functionality from silicon tracking detectors leads to more and more complex detector systems to cope with accelerator's present and future performance
- The need for these new complex systems has triggered a large RD effort in the area of sensors, electronics and detector integration
- Hybrid pixel detector for HL-LHC cope with enormous radiation level and hit rates together with sophisticated on-chip data handling
- Monolithic CMOS sensors are being developed for high-radiation environments with complex readout architectures for future large pixel systems
- The **combination of timing and tracking** leads to the development of new sensors for new level of performance in future silicon system with **LGAD sensors**
- Developing and integrating these sensors to modules and systems leads to many new RD collaborations with semiconductor industry for manufacturing and post-processing

Extra slides

MAPS with small electrodes

- Small collection electrode (few um²)
- Small input capacitance (<3fF) allows for fast & low-power FE
- High S/N for a depletion depth of ~20um
- To ensure full lateral depletion, uniform n-implant in the epi layer (modified process)

CERN

- Next submission ER1: first stitched engineering run:
 - main purpose: prove and learn about wafer=scale stitching in our context, also for ITS3 ALICE upgrade needed for TDR.
 - Includes
 - two sensors MOSS and MOST, stitched in one direction over the full wafer (height ~ 26 cm)
 - a non-stitched pixel test chip originating from hybrid pixel effort (hybrid to monolithic or H2M)
 - several other pixel test chips
 - chips aimed at building blocks for instance for high speed data transmission

TPSCo 65nm ISC CMOS imaging technology

- Transistor test chips
- SEU test chip
- New groups joining In addition to the groups already participating in MLR1.
- Latest WP1.2 status report: https://indico.cern.ch/event/1114453/

MOSS MOST

17/02/2022

