The physics case for axion searches in the 0.5-2 µeV mass range

Enrico Nardi

February 17th & 18th, 2022

Basic ingredients of the PQ solution

[Peccei, Quinn (1977), Weinberg (1978), Wilczek (1978)]

- A scalar potential invariant under a global U(1): $\Phi \rightarrow e^{i\xi} \Phi$, $\delta \mathcal{L}(\Phi) = 0$
- •U(1) SSB: $\Phi \rightarrow v_a e^{ia(x)/v_a}$. Shift symmetry $a(x) \rightarrow a(x) + \xi v_a$, $\delta \mathcal{L}(a) = 0$
- •Couplings between the scalars and some quarks $\overline{Q}_L \Phi q_R \rightarrow \overline{Q}_L v_a q_R e^{ia(x)/v_a}$ U(1) is then enforced by <u>identifying</u> chiral PQ charges $X(Q) X(q) = X(\Phi)$
- The symmetry must have a mixed U(1)-SU(3)_c² anomaly: $\Sigma_q(X_Q X_q) \neq 0$

By redefining the quark fields in the basis of real masses $\overline{Q}_L v_a q_R$:

$$\Theta G \widetilde{G} \longrightarrow (a(x)/v_a + \Theta) G \widetilde{G} \longrightarrow (a(x)/v_a) G \widetilde{G}$$

Instanton related non-perturbative QCD effects generate a potential

$$V_{QCD}(a) = -(m_{\pi} f_{\pi})^2 \cos(a/v_a)$$
 that drives $\langle a/v_a \rangle \rightarrow 0$ at the minimum

Vacuum realignment mechanism

[Abbott, Sikivie (1983), Dine, Fischler (1983), Preskill, Wise, Wilczek (1983)]

With the PQ solution, a relic population of non-rel. axions is unavoidable

•After SSB: $T < f_a$, $T >> \Lambda_{QCD} (\alpha_s << 1)$:

 $U(1)_{PQ}$ is broken only spontaneously, Instanton effects suppressed as $\sim e^{-2\pi/\alpha_s}$ $m_a = 0$, $a_i = \theta_i f_a$, $\theta_i \in [-\pi,\pi]$

• When T ~ Λ_{QCD} (α_s ~ 1) [$e^{-2\pi/\alpha_s}$ ~ O(1)] $U(1)_{PQ}$ suffers an explicit breaking: $m_a(T)$ turns on. When $m_a(T)$ ~ H(T) (H ~ 10^{-9} eV), ($\nu_a \cdot \tau_U$ ~ 1) a -> min. and starts oscillating

• Energy stored in oscillations behaves as CDM ($\rho_a \sim R^{-3}$)

Equation of motion for the axion field

Define
$$\theta = a/f_a$$

$$\ddot{\theta} + 3H(T)\dot{\theta} + m_a^2(T)\theta = 0$$

$$[\theta_i = ?, \dot{\theta}_i = 0]$$

$$H(T) \sim \sqrt{g^*(T)} \ T^2/m_P \leftarrow \text{Standard cosmology}$$

$$m_a(T) = m_0 (T_C/T)^4$$
 <- Standard QCD result (T>T_c ~ 160 MeV)

 T_1 : Critical damping temperature such that $m_a(T_1) \approx 3 H(T_1)$

Energy density at T_1 : $\rho_a(T_1) \sim \frac{1}{2} m_a^2(T_1) a_i^2 = \frac{1}{2} m_a^2(T_1) f_a^2 \Theta_i^2$

No. of axions per comv. vol.: $N = V_1 \rho_a(T_1)/m_a(T_1)$ is conserved

Present contrib. to Cosm. energy density

$$T_1 \rightarrow T_0;$$
 $V_1 \rightarrow V_0;$
 $m_a(T_1) \rightarrow m_0;$

 $T_1 \rightarrow T_0$; $V_1 \rightarrow V_0$; $V_2 \rightarrow V_0$; $V_3 \rightarrow V_0$; $V_1 \rightarrow V_0$; $V_2 \rightarrow V_0$; $V_3 \rightarrow V_0$; $V_1 \rightarrow V_0$; $V_2 \rightarrow V_0$; $V_3 \rightarrow V_0$; $V_1 \rightarrow V_0$; $V_2 \rightarrow V_0$; $V_3 \rightarrow V_0$; $V_1 \rightarrow V_0$; $V_2 \rightarrow V_0$; $V_3 \rightarrow V_0$; $V_1 \rightarrow V_0$; $V_2 \rightarrow V_0$; $V_3 \rightarrow V_0$; $V_4 \rightarrow V_0$; $V_1 \rightarrow V_0$; $V_2 \rightarrow V_0$; $V_3 \rightarrow V_0$; $V_4 \rightarrow V_0$; $V_1 \rightarrow V_0$; $V_2 \rightarrow V_0$; $V_3 \rightarrow V_0$; $V_4 \rightarrow V_0$; $V_1 \rightarrow V_0$; $V_2 \rightarrow V_0$; $V_3 \rightarrow V_0$; $V_4 \rightarrow V_0$; $V_1 \rightarrow V_0$; $V_2 \rightarrow V_0$; $V_3 \rightarrow V_0$; $V_4 \rightarrow V_0$; V_4

$$\rho_a(T_0) \propto m_\pi f_\pi T_0 \left(\frac{T_0}{m_P}\right)^{3/2} \sqrt{\frac{T_0}{H(T_1)}} \frac{g_s(T_0)}{g_s(T_1)} f_a \theta_i^2$$

Standard cosmology and (QCD) $m_a(T)$: $T_1 \sim 800 \text{ MeV}$ Standard Universe thermal history: $q_s(T_1) = 61.75$

$$\Omega_a^{\text{mis}} h^2 \approx 0.12 \left(\frac{10\,\mu\text{eV}}{m_0}\right)^{\frac{7}{6}} \theta_i^2$$
 i.

For $m_0 \in [0.5, 2.0] \mu eV$ $\theta_i \in [0.17, 0.39]$ rad i.e. 3.5% of the circle

Pre-inflationary scenario TPQ > HI, Trh

Post-inflationary scenarios: TPQ <HI, Trh

T~TPG

- n_a independent of initial conditions: $\langle \theta_i^2 \rangle = \pi^2/3$. More predictive for misalignment $\rho_{a\text{-mis}} \approx \rho_{DM} \rightarrow m_a \sim 30\text{-}100 \mu\text{eV}$
- Strings remain within the horizon (enter/annihilate) Eventually decay and contribute to ρ_a (important debate: spectrum/string density) masses up to $m_a \sim 0.5$ -3.5meV
- O(1) density contrasts: at matter/radiation equality (T ~ 1eV) overdensities start growing: axion miniclusters $R_{MC} \sim 1$ AU, $M_{MC} \sim 10^{-3}$ M_C, $\rho_{MC} \sim 10^{6}$ $\rho_{DM-local}$
- N_{DW} > 1: Strings-DW network is stable. ρ_{DW} dominates $\rho_{Universe}$ Solutions exist (e.g. small non-QCD explicit breaking)

Time

1st takeaway message:

Haloscopes sensitivity projections assume $\rho_{\alpha} = \rho_{CDM}$ (locally)

Assuming a standard Cosmology, a standard Universe thermal history, and standard particle physics:

- For the range 0.1-0.5Ghz ($m_a \sim 0.5$ -2.0 μeV) axion discovery requires a pre-inflationary scenario with initial conditions $\theta_i \in [0.2, 0.4]$
- •This is not a "fine tuned" condition (just a small prmt. region): $P(\theta_i \in [0.2,0.4]) = P(\theta_i \in [1.2,1.4])$
- The theoretical estimate is solid: it does not depend on unknown contributions from topological defects: $\rho_{a(tot)} = \rho_{a(mis)}$

Other Possibilities? Post-inflationary scenarios?

$$\ddot{\theta} + 3H(T)\dot{\theta} + m_a^2(T)\theta = 0$$

Non standard Cosmology (slower expansion, higher T_1)

ma(T) evolution beyond QCD

$$\rho_a(T_0) \propto m_{\pi} f_{\pi} T_0 \left(\frac{T_0}{m_P}\right)^{3/2} \sqrt{\frac{T_0}{H(T_1)}} \frac{g_s(T_0)}{g_s(T_1)} f_a \theta_i^2$$

Non standard $m_a f_a - m_{\pi} f_{\pi}$ relation

Non standard thermal history (entropy injection)

Post-Inflationary: rather large O(10) effects required

$$\langle \theta_i^2 \rangle \approx \pi^2 / 3 \implies \Omega_a^{\text{mis}} h^2 \approx 0.12 \left(\frac{28 \,\mu\text{eV}}{m_0} \right)^{\frac{1}{6}}$$

Entropy Injection:

Requires new particles decaying between $T_1 > T_{decay} > T_{BBN}$ entropy increased $g_s(T) \longrightarrow g_s(T) \Delta$ and $m_a^{DM} \longrightarrow m_a^{DM}/\Delta^{6/7}$ A rather large factor $\Delta \approx 20 \div 30$ is needed

Modified ma(T) evolution (mirror world)

Assume a mirror copy of the SM $G_{SM} \times G_{MIR}$;

BBN constrains $T_{MIR} \lesssim 0.4 T_{SM}$. QCD_{MIR} instantons kick in at $T_1 \gg T_1^{SM}$, oscillations start earlier, when $H(T_1)$ is larger

Non-standard mass-decay constant relation [A. Hook, PRL 120 (2018)]

Multi SU(3)_c construction: QCD \times QCD' \times ... \times QCDN;

$$Z_N: a \to a + 2\pi f_a/N; q_k \to q_{k+1}$$

One obtains: $m_0(N) = 2^{2-N/2} m_{\pi} f_{\pi} / f_{\alpha}$ requires $N \ge 12$

Non standard Cosmologies (scalar-tensor gravity) Periods of decelerated (or accelerated) expansion can occur, before converging to GR as T -> 0

Oscillations start at $T_1' > T_1$

2nd takeaway message:

 Reducing the axion DM mass in post-inflationary scenarios is difficult, but can be done. It requires a non-standard Universe thermal history, or rather "exotic" particle physics models, or a non-standard cosmology.

• The m_a suppression factors required are rather large (~20) even when considering only $\rho_{a(mis)}$. Sizeably larger factors will be needed in the realistic case: $\rho_{a(tot)} = \rho_{a(mis)} + \rho_{a(top,def.)}$

Thanks for your attention