On using SRF cavities to detect GWs

Diego Blas

based on A. Berlin, DB, R. T. D'Agnolo, S. Ellis, B.Harnik, X Kahn, U. Schütte-Engel 2112.11465

The Gravitational Soundscape

By Christopher Moore, Robert Cole and Christopher Berry, formerly of the Gravitational Wave Group at the Institute of Astronomy, University of Cambridge

The Gravitational Soundscape

By Christopher Moore, Robert Cole and Christopher Berry, formerly of the Gravitational Wave Group at the Institute of Astronomy, University of Cambridge

The Gravitational Soundscape

The Gravitational Soundscape at high frequencies

Crucial question: what sources above kHz ?

Ringwald et al, 2011.0473

What are we looking for?

Interaction GWs with light

$$
\begin{gathered}
\mathcal{L}=\sqrt{-g}\left(R+F_{\mu \nu} F^{\mu \nu}\right) \supset \frac{1}{2} A_{\mu} j_{\mathrm{eff}}^{\mu}(h)+\eta^{\mu \alpha} \eta^{\nu \beta} F_{\mu \nu} F_{\alpha \beta}+O\left(h^{2}\right) \\
j_{\mathrm{eff}}^{\mu}=-\partial_{\beta}\left(\frac{1}{2} h F^{\mu \beta}+h_{\alpha}^{\beta} F^{\alpha \mu}-h_{\alpha}^{\mu} F^{\alpha \beta}\right)
\end{gathered}
$$

$h_{O\left(F^{\mu \nu}\right)}^{\mu \nu} \approx \sim A^{\mu}$

What are we looking for?

Interaction GWs with light

analogy with axions
a か~~~mun A^{μ}

Where are we looking for it?

Cavities

'Empty'
(large static mode, ADMX-like)

Where are we looking for it?

Cavities

'Empty'
(large static mode, ADMX-like)

‘Loaded'

|17

Better suited for 'broad band exploration'

How does this happen?

Cavities

EM-coupling
Mechanical-coupling (shaking the walls)

ลn

How does this happen?

Cavities

EM-coupling
Mes -coupling

other designs for
ξ

How does this happen?

Cavities

EM-coupling
Mecr -coupling

axion-mechanical?

How does this happen?

Cavities

EM-coupling
Mecr -coupling

ξ

 are aso ossille

Some (VERY IMPORTANT) details

Some (VERY IMPORTANT) details

Some (VERY IMPORTANT) details

Local inertial i) choice of frame

Laboratory frame

$$
\ddot{z}^{\mu}+\Gamma_{\nu \lambda}^{\mu} \dot{z}^{\nu} \dot{z}^{\lambda}=a^{\mu}
$$

laboratory coordinates accelerated wrt LIF

$$
\begin{aligned}
g_{00} & =-\left(1+a_{i} x^{i}\right)^{2}+(\vec{\omega} \times \vec{x})^{2}-h_{00}^{L I F}-2(\vec{\omega} \times \vec{x})_{\underline{i}} h_{0 i}^{L I F} \\
& -(\vec{\omega} \times \vec{x})_{\underline{i}}(\vec{\omega} \times \vec{x})_{j} h_{i j}^{L I F} \\
g_{0 i} & =(\vec{\omega} \times \vec{x})_{i}-\gamma_{0 i}-(\vec{\omega} \times \vec{x})_{j} h_{i j}^{L I F} \\
g_{i j} & =\delta_{i j}-h_{i j}^{L I F}
\end{aligned}
$$

Some (VERY IMPORTANT) details

$$
R \sim \omega^{2} h
$$

i) choice of frame $R_{\mu \nu \rho \sigma}(h)=R_{\mu \nu \rho \sigma}\left(h^{T T}\right)+O\left(h^{2}\right)$

LIF at order $\quad O\left((\omega L)^{3}\right)$

$$
h_{00} \simeq-R_{0 i 0 j} x^{i} x^{j} \quad, \quad h_{i j} \simeq-\frac{1}{3} R_{i k j l} x^{k} x^{l}, \quad h_{0 i} \simeq-\frac{2}{3} R_{0 j i k} x^{j} x^{k}
$$

Some (VERY IMPORTANT) details

$$
R \sim \omega^{2} h
$$

i) choice of frame $R_{\mu \nu \rho \sigma}(h)=R_{\mu \nu \rho \sigma}\left(h^{T T}\right)+O\left(h^{2}\right)$

LIF at order $\quad O\left((\omega L)^{3}\right)$

$$
h_{00} \simeq-R_{0 i 0 j} x^{i} x^{j} \quad, \quad h_{i j} \simeq-\frac{1}{3} R_{i k j l} x^{k} x^{l}, \quad h_{0 i} \simeq-\frac{2}{3} R_{0 j i k} x^{j} x^{k}
$$

$$
\begin{aligned}
\left(h_{\alpha \beta}^{\mathrm{TT}}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & h_{x x} & h_{x y} & 0 \\
0 & h x y & -h x x & 0 \\
0 & 0 & 0 & 0
\end{array}\right) h_{00} & \simeq \frac{1}{2} \partial_{t}^{2} h_{a b}^{\mathrm{TT}} x^{a} x^{b}+\mathcal{O}\left(x^{3}\right) \\
h_{i j} & \simeq-\frac{1}{6} \partial_{t}^{2}\left[\left(\delta_{i z} h_{j a}^{\mathrm{TT}}+\delta_{j z} h_{i a}^{\mathrm{TT}}\right) z x^{a}-h_{i j}^{\mathrm{TT}} z^{2}-\delta_{i z} \delta_{j z} h_{a b}^{\mathrm{TT}} x^{a} x^{b}\right]+\mathcal{O}\left(x^{3}\right) \\
h_{0 i} & \simeq \frac{1}{3} \partial_{t}^{2}\left(h_{i a}^{\mathrm{TT}} z x^{a}-\delta_{i z} h_{a b}^{\mathrm{TT}} x^{a} x^{b}\right)+\mathcal{O}\left(x^{3}\right) \quad \text { (proper detector frame) }
\end{aligned}
$$

Some (VERY IMPORTANT) details

$$
R \sim \omega^{2} h
$$

i) choice of frame $R_{\mu \nu \rho \sigma}(h)=R_{\mu \nu \rho \sigma}\left(h^{T T}\right)+O\left(h^{2}\right)$

LIF at order $\quad O\left((\omega L)^{3}\right)$

$$
h_{00} \simeq-R_{0 i 0 j} x^{i} x^{j} \quad, \quad h_{i j} \simeq-\frac{1}{3} R_{i k j l} x^{k} x^{l}, \quad h_{0 i} \simeq-\frac{2}{3} R_{0 j i k} x^{j} x^{k}
$$

Some (VERY IMPORTANT) details

$$
R \sim \omega^{2} h
$$

i) choice of frame $\quad R_{\mu \nu \rho \sigma}(h)=R_{\mu \nu \rho \sigma}\left(h^{T T}\right)+O\left(h^{2}\right)$

$$
\begin{aligned}
& \text { LIF at order } O\left((\omega L)^{3}\right) \\
& h_{00} \simeq-R_{0 i 0 j} x^{i} x^{j} \quad, \quad h_{i j} \simeq-\frac{1}{3} R_{i k j l} x^{k} x^{l}, \quad h_{0 i} \simeq-\frac{2}{3} R_{0 j i k} x^{j} x^{k} \\
&
\end{aligned}
$$

Some (VERY IMPORTANT) details

$$
R \sim \omega^{2} h
$$

i) choice of frame $R_{\mu \nu \rho \sigma}(h)=R_{\mu \nu \rho \sigma}\left(h^{T T}\right)+O\left(h^{2}\right)$

$$
\begin{aligned}
& h_{00} \simeq-R_{0 i 0 j} x^{i} x^{j} \text { LIF at order } Q\left((\omega L)^{3}\right) \\
& h_{i j} \simeq-\frac{1}{3} R_{i k j l} x^{k} x^{l}, \quad h_{0 i} \simeq-\frac{2}{3} R_{0 j i k} x^{j} x^{k} \\
&(R x) \sim O((\omega L))
\end{aligned}
$$

Some (VERY IMPORTANT) details

i) choice of frame $R_{\mu \nu \rho \sigma}(h)=R_{\mu \nu \rho \sigma}\left(h^{T T}\right)+O\left(h^{2}\right)$

LIF at all order in $h^{\mu \nu}$

$$
\begin{aligned}
& h_{00}=-2 x^{k} x^{\ell} \sum_{n=0}^{\infty} \frac{n+3}{(n+3)!} x^{m_{1}} \cdots x^{m_{n}} \partial_{m_{1}} \cdots \partial_{m_{n}} R_{0 k 0 \ell} \\
& h_{0 j}=-2 x^{k} x^{\ell} \sum_{n=0}^{\infty} \frac{n+2}{(n+3)!} x^{m_{1}} \cdots x^{m_{n}} \partial_{m_{1}} \cdots \partial_{m_{n}} R_{0 k j \ell} \\
& h_{i j}=-2 x^{k} x^{\ell} \sum_{n=0}^{\infty} \frac{n+1}{(n+3)!} x^{m_{1}} \cdots x^{m_{n}} \partial_{m_{1}} \cdots \partial_{m_{n}} R_{i k j \ell}
\end{aligned}
$$

Some (VERY IMPORTANT) details

ii) the signal in terms of power

$$
Q=\omega \frac{\text { Stored energy }}{\text { Power loss }}
$$

Power extracted in a resonant cavity

Some (VERY IMPORTANT) details

ii) the signal in terms of power

waveguide

$$
Q=\omega \frac{\text { Stored energy }}{\text { Power loss }}
$$

Power extracted in a resonant cavity

Some (VERY IMPORTANT) details

ii) the signal in terms of power

$$
P=\beta \frac{\omega}{Q}\langle U\rangle
$$

\vec{B}_{0}

$$
B^{2} \sim\left(B^{0}\right)^{2}+2 B^{0} B^{1}+\left(B^{1}\right)^{2}
$$

$O(h) e^{i \omega t}$ unless B^{0} resonates (in time) $\left\langle B^{0} B^{1}\right\rangle=0$ and $\langle U\rangle \sim O\left(h^{2}\right)$

Some (VERY IMPORTANT) details

ii) the signal in terms of power

$$
P=\beta \frac{\omega}{Q}\langle U\rangle
$$

(aN)

$$
U=\int \mathrm{d}^{3} x \frac{1}{2}\left(\operatorname{Re}[\boldsymbol{E}(\boldsymbol{x}, t)]^{2}+\operatorname{Re}[\boldsymbol{B}(\boldsymbol{x}, t)]^{2}\right)
$$

$$
B(x, t)=B^{(0)}+B^{(1)}(x, t)
$$

$$
B(x, t)=E^{(1)}(x, t)
$$

$$
B^{2} \sim\left(B^{0}\right)^{2}+2 B^{0} B^{1}+\left(B^{1}\right)^{2}
$$

$$
\mathcal{O}(h)
$$

$$
\begin{aligned}
& O(h) e^{i \omega t} \text { unless } B^{0} \text { resonates (in time) }\left\langle B^{0} B^{1}\right\rangle=0 \\
& \text { and }\langle U\rangle \sim O\left(h^{2}\right)
\end{aligned}
$$

Some (VERY IMPORTANT) details

ii) the signal in terms of power

$$
P=\beta \frac{\omega}{Q}\langle U\rangle
$$

Some (VERY IMPORTANT) details

ii) the sianal in terms of power

Back to our calculation: mode excitation

$$
\boldsymbol{E}(\boldsymbol{x}, t)=\sum \boldsymbol{E}_{s n}(\boldsymbol{x}, t)+\boldsymbol{E}_{i n}(\boldsymbol{x}, t)
$$

solenoidal irrotational

$$
\begin{aligned}
\boldsymbol{E}_{s n}(\boldsymbol{x}, t) & =e_{s n}(t) \boldsymbol{E}_{s n}(\boldsymbol{x}) \\
\boldsymbol{E}_{i n}(\boldsymbol{x}, t) & =e_{i n}(t) \boldsymbol{E}_{i n}(\boldsymbol{x})
\end{aligned}
$$

$$
\left(\omega_{s m}^{2}+\partial_{t}^{2}+\sigma_{s m} \partial_{t}\right) e_{s m}(t)=e^{-i \omega_{G} t} \eta_{s m}
$$

$$
\left(\partial_{t}^{2}+\sigma_{i m} \partial_{t}\right) e_{i m}(t)=e^{-i \omega_{G} t} \eta_{i m}
$$

$$
\eta \sim \int_{V} \mathrm{~d}^{3} x E J_{e f f}
$$

'source' (here we want to maximise)

Back to our calculation: mode excitation

$$
\boldsymbol{E}_{s n}(\boldsymbol{x}, t)=e_{s n}(t) \boldsymbol{E}_{s n}(\boldsymbol{x})
$$

(only solenoidal modes are excited)

$$
\begin{gathered}
U=\int \mathrm{d}^{3} x \frac{1}{2}\left(\operatorname{Re}[\boldsymbol{E}(\boldsymbol{x}, t)]^{2}+\operatorname{Re}[\boldsymbol{B}(\boldsymbol{x}, t)]^{2}\right) \\
P=\beta \frac{\omega}{Q}\langle U\rangle
\end{gathered}
$$

when considering only thermal noise one gets

$$
h_{0} \gtrsim 3 \times 10^{-22} \times\left(\frac{1 \mathrm{GHz}}{\omega_{g} / 2 \pi}\right)^{3 / 2}\left(\frac{0.1}{\eta_{n}}\right)\left(\frac{8 \mathrm{~T}}{B_{0}}\right)\left(\frac{0.1 \mathrm{~m}^{3}}{V_{\text {cav }}}\right)^{5 / 6}\left(\frac{10^{5}}{Q}\right)^{1 / 2}\left(\frac{T_{\mathrm{sys}}}{1 \mathrm{~K}}\right)^{1 / 2}\left(\frac{\Delta \nu}{10 \mathrm{kHz}}\right)^{1 / 4}\left(\frac{1 \mathrm{~min}}{t_{\text {int }}}\right)^{1 / 4},
$$

which modes get excited?

Back to our calculation: mode excitation

$$
\boldsymbol{E}_{s n}(\boldsymbol{x}, t)=e_{s n}(t) \boldsymbol{E}_{s n}(\boldsymbol{x})>\eta_{s m}=\frac{\int_{V} d V \boldsymbol{E}_{s m}^{*}(\boldsymbol{x})\left(i \omega_{G} \boldsymbol{J}_{\mathrm{eff}}(\boldsymbol{x})\right)}{\int_{V} d V\left|\boldsymbol{E}_{s m}(\boldsymbol{x})\right|^{2}}
$$

TM (121)

TE (212)
there is ALWAYS a response (even for longitudinal waves!)!

Recall the(VERY IMPORTANT) details

$$
h_{i j}^{\mathrm{TT}}=\left(\begin{array}{ccc}
h_{+} & h_{\times} & 0 \\
h_{\times} & -h_{+} & 0 \\
0 & 0 & 0
\end{array}\right)_{i j} e^{i \omega(t-z)}
$$

in the LAB
\quad e.g.at
$\left.\boldsymbol{O}\left((\omega L)^{3}\right)\right)$$\left\{\begin{array}{l}h_{00} \simeq \frac{1}{2} \partial_{t}^{2} h_{a b}^{\mathrm{TT}} x^{a} x^{b}+\mathcal{O}\left(x^{3}\right) \\ h_{i j} \simeq-\frac{1}{6} \partial_{t}^{2}\left[\left(\delta_{i z} h_{j a}^{\mathrm{TT}}+\delta_{j z} h_{i a}^{\mathrm{TT}}\right) z x^{a}-h_{i j}^{\mathrm{TT}} z^{2}-\delta_{i z} \delta_{j z} h_{a b}^{\mathrm{TT}} x^{a} x^{b}\right]+\mathcal{O}\left(x^{3}\right) \\ h_{0 i} \simeq \frac{1}{3} \partial_{t}^{2}\left(h_{i a}^{\mathrm{TT}} z x^{a}-\delta_{i z} h_{a b}^{\mathrm{TT}} x^{a} x^{b}\right)+\mathcal{O}\left(x^{3}\right) \quad \text { (proper detector frame) }\end{array}\right.$

Mode excitation at $\alpha=0$
Berlin et al $21|2 .| | 465$

Projected Sensitivities of Axion Experiments

The Gravitational Soundscape at high frequencies

Crucial question: detectability above kHz ?

$\left.\begin{array}{|c||c|c|c|}\hline \text { Technical concept } & \text { Frequency } & \begin{array}{c}\text { Proposed sensitivity } \\ \text { (dimensionless) }\end{array} & \begin{array}{c}\text { Proposed sensitivity } \\ \sqrt{S_{n}(f)}\end{array} \\ \hline \hline \text { Spherical resonant mass, Sec. 4.1.3 [282] } & & & \\ \hline \text { Mini-GRAIL (built) [289] } & 2942.9 \mathrm{~Hz} & \begin{array}{c}10^{-20} \\ 2.3 \cdot 10^{-23}(*)\end{array} & \begin{array}{c}5 \cdot 10^{-20} \mathrm{~Hz}^{-\frac{1}{2}} \\ 10^{-22} \mathrm{~Hz}^{-\frac{1}{2}}(*)\end{array} \\ \hline \text { Schenberg antenna (built) [286] } & 3.2 \mathrm{kHz} & \begin{array}{c}2.6 \cdot 10^{-20} \\ 2.4 \cdot 10^{-23}(*)\end{array} & \begin{array}{c}1.1 \cdot 10^{-19} \mathrm{~Hz}^{-\frac{1}{2}} \\ 10^{-22} \mathrm{~Hz}^{-\frac{1}{2}}(*)\end{array} \\ \hline \text { Laser interferometers } & & & \\ \hline \text { NEMO (devised), Sec. 4.1.1 [25, 272] } & {[1-2.5] \mathrm{kHz}} & 9.4 \cdot 10^{-26} & 100 \mathrm{MHz} \\ \hline \text { Akutsu's proposal (built), Sec. 4.1.2 [277,328] } & {[1-13] \mathrm{MHz}} & 8 \cdot 10^{-14}(*) & \begin{array}{c}10^{-24} \mathrm{~Hz}^{-\frac{1}{2}} \\ 10^{-20} \mathrm{~Hz}^{-\frac{1}{2}}(*)\end{array} \\ \hline \text { Holometer (built), Sec. 4.1.2 [279] } & & 10^{-22} & 10^{-21} \mathrm{~Hz}^{-\frac{1}{2}}\end{array}\right]$

FoM:

$h_{c} \sim 10^{-23}(\mathrm{GHz} / f)$
$h_{s} \sim 10^{-30}(\mathrm{GHz} / f)$

The Gravitational Soundscape at high frequencies

Crucial question: detectability above kHz ?

Resonant polarization rotation, Sec. 4.2.4 [307]			
Cruise's detector (devised) [308]	$\left(0.1-10^{5}\right) \mathrm{GHz}$	$h \simeq 10^{-17}$	\times
Cruise \& Ingley's detector (prototype) [309, 310]	100 MHz	$8.9 \cdot 10^{-14}$	$10^{-14} \mathrm{~Hz}^{-\frac{1}{2}}$
Enhanced magnetic conversion (theory), Sec. 4.2.5 [311]	5 GHz	$h \simeq 10^{-30}-10^{-26}$	\times
Bulk acoustic wave resonators (built), Sec. 4.2.6 [316, 317]	$(\mathrm{MHz}-\mathrm{GHz})$	$4.2 \cdot 10^{-21}-2.4 \cdot 10^{-20}$	$10^{-22} \mathrm{~Hz}^{-\frac{1}{2}}$
Superconducting rings, (theory), Sec. 4.2 .7 [318]	10 GHz	$h_{0, n, \text { mono }} \simeq 10^{-31}$	\times
Microwave cavities, Sec. 4.2.8			
Caves' detector (devised) [320]	500 Hz	$h \simeq 2 \cdot 10^{-21}$	\times
Reece's 1st detector (built) [321]	1 MHz	$h \simeq 4 \cdot 10^{-17}$	\times
Reece's 2nd detector (built) [322]	10 GHz	$h \simeq 6 \cdot 10^{-14}$	\times
Pegoraro's detector (devised) [323]	$(1-10) \mathrm{GHz}$	$h \simeq 10^{-25}$	\times
Graviton-magnon resonance (theory), Sec. 4.2.9 [324]	$(8-14) \mathrm{GHz}$	$9.1 \cdot 10^{-17}-1.1 \cdot 10^{-15}$	$\left(10^{-22}-10^{-20}\right) \mathrm{Hz}^{-\frac{1}{2}}$

FoM:

$$
\begin{aligned}
h_{c} & \sim 10^{-23}(\mathrm{GHz} / f) \\
h_{s} & \sim 10^{-30}(\mathrm{GHz} / f)
\end{aligned}
$$

Table 1: Summary of existing and proposed detectors with their respective sensitivities. See Sec. 4.3 for details.

Two words on mechanical coupling

$$
P_{\mathrm{sig}} \simeq \frac{h_{+, \times}^{2}}{16}\left|\eta_{u}^{\text {(mech. })}\right|^{2}\left|\tilde{\eta}_{e}^{\text {(mech. })}\right|^{2} Q_{1} \omega_{1}\left\langle E_{\text {pump }}^{2}\right\rangle V_{0} \times \begin{cases}\frac{\omega_{h}^{4}}{\left(\omega_{h}^{2}-\omega_{m}^{2}\right)^{2}} & \left(\left|\omega_{h}-\omega_{m}\right| \gg \omega_{m} / Q_{m}\right) \\ Q_{m}^{2} & \left(\left|\omega_{h}-\omega_{m}\right| \ll \omega_{m} / Q_{m}\right)\end{cases}
$$

Conclusions

- SRF cavities are a mature technology to look for GWs at GHz either
- 'ADMX' like
- Heterodyne

- As in any GR calculation: subtleties in working with a consistent gauge
- T gauge needs to be converted to laboratory frame
- The laboratory frame may need all orders in $(R x) \sim O((\omega L))$
- The way one reads out cavities is sensitive to time averaged $\langle U\rangle \sim O\left(h^{2}\right)$
- In the laboratory frame, there is sensitivity to ALL directions! (also longitudinal)
- Stay tuned for the connection to real world... (noise estimates + prospects)

