

2011+

Massimo Lamanna / CERN
(for the IT-DSS group)

ATLAS retreat Napoli 2-4 Jan 2011

Introduction

● IT DSS: responsible of the data management for physics at CERN
● Mainly but not exclusively the LHC experiments
● Physics data (on disk and tape): notably AFS, CASTOR and EOS

● Production services but not a steady-state situation
● Technology evolves
● New ideas are being discussed within HEP

– Includes rediscovering of “old” ideas
● “All relevant data on disk” part of the computing model back in 1999 (Hoffmann review)

● Experience from the LHC data taking
– 10+ M files per month

– Times 3 in total size in the next few years (40 PB → 120 PB in 2015)
● Learn more about your 2011 plans (rates, data model, etc...)

– Real data are more interesting than MonteCarlo: users, users, users, users
– Master operational load!

How we proceeded so far

● Bringing EOS alive
● Integrating best ideas, technology and experience
● Refocus on experiments requirements
● Expose developments at early stage
● Operations on board at early stage

● First experience: LST (with ATLAS)
● Similar activity starting with CMS
● And interest from others
● Some similarities with Tier3/Analysis Facilities

approaches

Next steps (2011)

● Software
● EOS consolidation (April)

● Operations
● Set up EOS as a service (streamlined ops effort)

● Steady process:

– Continue to build on CASTOR experience (procedures, etc...)

– Simplifying the overall model and procedures
● In a nutshell: no need of synchronous (human) intervention

● More monitoring (including user monitoring)

● Deployment
● D1 area

● Dependable Serviceable High-Performance High-Concurrency Multi-User
Data Access

– Analysis use cases

Immediate steps

● Streamlining of the space token (disk pools)
● Less (but larger) entities (“disk pools”)

● Share different approaches/experiences

● Reduction of duplication/optimisation of resources
● Analysis areas (CASTOR → EOS)

● Hot-disk areas

– Interplay with CERNVMF data will be understood

● Replication per directory

– Fine-grained control of reliability, availability and performance

● Continuing to “protect” tape resources from users :)
● CMS is looking into the ATLAS model

● Successful implementation depends on experiment support

● More transparency (monitoring and user-supporting activities)
● service-now migration

● Keep users aware of what is going on (not only the ADC experts) will help our 1st/2nd/3rd
lines support

Data & Storage
ServicesReplica healing (3-replica case)

asynchronous operations (failure/draining/rebalancing/...)

CLIENTCLIENT

MGMMGM

The intervention on the failing box can be done when appropriate
(asynchronously) because the system re-establishes the foreseen
number of copies. The machine carries no state (it can be
reinstalled from scratch and the disk cleaned as in the batch node
case). All circles represent a machine in production

6

CLIENTCLIENT

CLIENTCLIENT

CLIENTCLIENT

CLIENTCLIENT

Future developments (example)
availability and reliability

● Plain (reliability of the service = reliability of the hardware)
● Example: a CASTOR disk server running in RAID1 (Mirroring: n=1, m=1 S=1+m/n)

● Since the two copies belong to the same PC box, availability can be a problem

● Replication
● Reliable, maximum performance, but heavy storage overhead

● Example: n=1, m=2; S = 1+ 200% (EOS)

● Reed-Solomon, double, triple parity, NetRaid5, NetRaid6
● Maximum reliability, minimum storage overhead

● Example (n+m) = 10+3, can lose any 3 out of 13

● S = 1 + 30%

● EOS/RAID5 prototype being evaluated internally

● Low Density Parity Check (LDPC) / Fountain Codes
● Excellent performance, more storage overhead but better than

● Example: (n+m)=8+6, can lose any 3 out 14 (S=1+75%)

EOS CASTOR

Spare (for discussion)

Requirements for analysis

• Multi PB facility
• RW file access (random and sequential reads, updates)
• Fast Hierarchical Namespace

– Target capacity: 109 files, 106 containers (directories)

• Strong authorization
• Quotas
• Checksums
• Distributed redundancy of services and data

– Dependability and durability

• Dynamic hardware pool scaling and replacement without
downtimes
– Operability

Starting points

● April 2010: storage discussions within the IT-DSS group

● Prototyping/development started in May

● Input/discussion at the Daam workshop (June 17/18)

● Demonstrators

● Build on xroot strengths and know-how

● Prototype is under evaluation since August

● Pilot user: ATLAS

● Input from the CASTOR team (notably operations)

● ATLAS Large Scale Test (pool of ~1.5 PB)

● Now being opened to ATLAS users

● Ran by the CERN DSS operations team

● Still much work left to do

● Good points:

– Early involvement of the users

– Operations in the project from the beginning

● This activity is what we call EOS

Selected features of EOS

• Is a set of XRootd plug-ins
• And speaks XRoot protocol with you

• Just a Bunch Of Disks...
• JBOD - no hardware RAID arrays

• “Network RAID” within node groups

• Per-directory settings
– Operations (and users) decide availability/performance (n. of

replicas by directory – not physical placement)
• One pool of disk – different classes of service

• Dependable and durable
– Self-healing
– “Asynchronous” operations (e.g. replace broken disks when

“convenient” while the system keeps on running)

Data & Storage
Services

EOS Architecture

Head nodeHead node

File serverFile server

MQMQ

NSNS

sync

async

async

 Head node
Namespace, Quota
Strong Authentication
Capability Engine
File Placement
File Location

Message Queue
Service State Messages
File Transaction Reports

 File Server
File & File Meta Data Store
Capability Authorization
Checksumming & Verification
Disk Error Detection (Scrubbing)

Starting points

Data & Storage
Services EOS Namespace

Version 1 (current)
In-memory hierarchical namespace using Google hash

Stored on disk as a changelog file

Rebuilt in memory on startup

Two views:
– hierarchical view (directory view)

– view storage location (filesystem view)

very fast, but limited by the size of memory
– 1GB = ~1M files

Version 2 (under development)

Only view index in memory

Metadata read from disk/buffer cache

Perfect use case for SSDs (need random IOPS)

109 files = ~20GB per view 14

Namespace V1 V2*

Inode
Scale 100 M inodes 1000 M inodes

In-Memory Size
80-100 GB

(replicas have minor space
contribution)

20 GB
x n(replica)

Boot Time ~520 s ** 15-30 min **

(difficult to guess)

Pool size assuming
avg. 10 Mb/file + 2 replicas 2 PB 20 PB

Pool Nodes assuming
40 TB/node 50 500

File Systems assuming
20 / node 1.000 10.000

Data & Storage
Services

High Availability - Namespace scaling

HNHN HNHN

active in rw mode passive failover in rw mode

HNHN

active in ro mode

HNHN

active-passive RW master

active-active RO
slaves

HNHN HNHN

HA & Read Scale out

HNHN

/atlas

HNHN

/cms

HNHN

/alice

HNHN

/lhcb

HNHN HNHN

/atlas/data /atlas/user

Write Scale out

16

File creation test

1 kHz

NS Size: 10 Mio Files
* 22 ROOT clients 1 kHz
* 1 ROOT client 220 Hz

MGMMGM

FSTFST

17

File read test

7 kHz

NS Size: 10 Mio Files
* 100 Million read open
* 350 ROOT clients 7 kHz
* CPU usage 20%

MGMMGM

FSTFST

Data & Storage
Services Replica layout

FS1FS1

FS2FS2 FS3FS3

ClientClient

write(offset,len)

write(offset,len)

1

2
4

3
5

6

return code

500 MB/s injection result in
 - 1 GB/s output on eth0 of all disk servers
 - 1.5 GB/s input on eth0 of all disk servers

Plain (no replica)
Replica (here 3 replicas)
More sophisticated redundant storage
(RAID5, LDPC)

Network IO for file creations with 3
replicas:

19

Data & Storage
Services Replica healing

Rep 1Rep 1
OnlineOnline

Rep 2Rep 2
OnlineOnline

Rep 3Rep 3
OfflineOffline

CLIENTCLIENT

MGMMGM

open file for update (rw)

Rep 1Rep 1
OnlineOnline

Rep 2Rep 2
OnlineOnline

Rep 3Rep 3
OfflineOffline

CLIENTCLIENT

MGMMGM

come back in <N> sec

Rep 4Rep 4
Sched.Sched.

schedule transfer 2-4

Client RW reopen of an existing file triggers
- creation of a new replica
- dropping of offline replica

20

Replica placement

Node
1

Node
2

Node
3

Node
4

Node
5

Node
6

Node
7

Node
8

21

In order to minimize the risk
of data loss we couple disks
into scheduling groups
(current default is 8 disks per
group)

• The system selects a scheduling group to store a file in in
a round-robin

• All the other replicas of this file are stored within the
same group
• Data placement optimised vs hardware layout (PC boxes,
network infrastructure, etc...)

