'Life without ESD'

(proposal from DP)

Ueda I. 2011.02.02.

Introduction

As we have been discussing since the last S&C week, the data volume will become huge with a probable increase in the trigger rate = ESD cannot be put on T1 disks

This proposal from the Data Preparation et al. is still a draft under discussion

- There have been a series of meetings to gather information if and how people can adapt their life without ESD
- The feedback from the perf/phys groups are reflected in the draft

Baseline:

- Most of ESD do not stay on disk for long term
- No ESD archived on tape

ESD on disk

- No long term storage of ESDs on disk for bulk physics streams
- "Bulk stream": 2 replicas on disk for short period for det/trig/perf studies
 - Approximate 10% of the full-year data
 - ▶ ESD from T0 : for 1 2 months
 - ESD from repro: a specified period (corresponds to 10%)
 - replicate to T1s = possible DESD production at T1s
 - No PD2P allowed
- Specific small streams: 2 replicas for all data all the time
 - ~ 35 Hz (incl. express 15 Hz)
 - full set for Nth processing, only the ZeroBias and CosmicCalo for N-1
 - PD2P allowed
- No ESD copy on TAPE
 - reprocessing from ESD abandoned = always from RAW

RAW on disk

One replica of RAW on disk

No automatic replication allowed

Aim:

- investigation of "exciting discovery" events as fast as possible (<24h)
 - only required for data taken within the last year
 - $\sim 10 100$ events to look at in detail distributed randomly
 - need a user interface to turn a RAW event into an ESD etc.
- Also for event displays or detailed debugging of specific events

To be concidered

- The number of replicas could be revised
 - The latency and operational burden for recovering a loss should be estimated
- Possible reduction of the RAW event size by a factor of 2
 - "gzip" or better packing

AOD/DESD

AOD

- at least 6 primary replicas for the physics streams
- additional secondary copies can be created depending on user demand and disk space constraints
- no need to keep the express stream AOD

DESD

- at least 4 primary replicas
- additional secondary copies can be created depending on user demands and disk space constraints
- only needs to be kept for the most recent (Nth) processing
 - DESD is primarily used for performance studies
 - A possible exception when used for physics analysis

Rough Estimate

The data volumes from run 167607 in 2010 (400 Hz, 11h) 200 days of pp running with 30% LHC up-time

Rough Estimate for 2011

The data sizes from run 167607 in 2010 (400 Hz, 11h) 200 days of pp running with 30% LHC up-time

	streams	1 сору	#rep	Z	N-1	total
RAW	bulk	2.7 PB ₍₁₎	1			2.7 PB
ESD	bulk	2.8 PB	2 (2)	0.8 PB	0.8 PB	1.6 PB
ESD	small	200 TB	2	0.8 PB	0.1 PB	0.9 PB
AOD	all (3)	400 TB	6	2.4 PB	2.4 PB	4.8 PB
DESD	all	380 TB	4	1.5 PB	-	1.5 PB
total				5.5 PB	3.3 PB	11.5 PB

(1) full size (without 1/2 reduction) (2) x 60d (3) all but express

NB. some numbers need to be understood

Alternative scenarios

- 10 AOD and DESD primary replicas for N: 12.7 PB
- 30% reduction in ESD size: 7.9 PB
- 20% increase in the DESD and Express stream: 9.6 PB
- 2 DESD for (N-1): 9.5 PB
- LHC efficiency 50%: 14.7 PB
- increase of 20% of the AOD: 9.8 PB
- 3 AOD of the (N-1): 7.6 PB

- The current (2010) scenario: 27 PB
 - ▶ 2 ESD, 10 AOD and DESD for both N and (N-1),
 - all streams apart from the express stream,
 - and no RAW data on disk

Other than 2011 pp

2010 data

- reduce replicas 4 PB
- delete rel15 ESD with a 3-month notice 3 PB
- no need for RAW on disk as long as ESD on disk no increase
- consider deleting periods A-C (only 300/nb)
- and older data (2009 and cosmics)

Heavy Ion data

to be accounted

MC

not yet