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Predicting many properties of a quantum system from
very few measurements

New method for an approximate classical description of a quantum state called

Classical Shadow.
« M different properties can be efficiently predicted with order(log(M))
measurements.

* The n°® of measurements required respects information-theoretic lower

bounds and is independent on the n° of qubits (system size).

« Use cases: quantum fidelities, entanglement entropies, two-point correlation
functions, expectation values of local observables and the energy variance of

many-bod local Hamiltonians.
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Need for Classical shadows

List of predictive tasks essential to build, calibrate and construct a quantum
system.
« Exploit classical shadows to develop further quantum hardware.

e The prediction power of Quantum State Tomography and other techniques
abates exponentially with the system size:

» Number of parameters describing a quantum state exponential in n.

» The knowledge of each parameter is limited by QM theory (measure
identical states multiple times to get statistics).

» All measurements are stored classically (exponential memory needed).
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Need for Classical shadows

Classical shadows combine

— | .

Quantum State Shadow Tomography Stabilizer Formalism
Tomography (Aaronson formalism) (efficient implementation)
o Can use polynomial o Functions (non-)linear in p of the unknown o It allows to store efficiently
number of samples in state: on a classical memory the
suitable conditions . 0(p) = trace(Op) 1<i<M classical shadow.
o Conveys rigorous o Itis a decomposition
statistical convergence o No need to fully characterize the quantum technique for local
guarantees. state and polynomial n° of state copies to observables or global

predict an exponential n°® of O, observables. features.
o Exponentially long quantum circuits.




Procedure

pl—)UpUT measure in the —> n-bit measurement outcome |l;> € {0,1}"
computational-basis N
0. T 1. Store an efficient
Rotate P with U seleted CliTZ;c;?(lzaslnri]zsmhzt on Comp|ete|y classical
R randomly from a f|Xed y post_process|ng Step
ensemble

Repeat N times

to get an independent 2. o
3 array of classical snapshots of p E[UT’bxb’U] =Mp) = p= [E{M_I(UT”’X”‘U)]
Classical snapshot of the unknown Average mapping of p over choice of U and
quantum state p in a single outcome distribution seen as a quantum

measurement channel M




Classical shadow algorithm

1 function LiINeARPReDICTIONS(O,, ..., Oy, S(p; N), K)
2 Import S(p;N) = [p;, ... , pn] > Load classical shadow

3 Split the shadow into K equally-sized parts and set > Construct K
estimators of p

. k[N/K |
. ) _ -1 711 7 Py = \_N/K Z, (k—T)[N/K]+1 P
S(p,N)—{pl—M (Ul‘bl><bl|U1)!“" 4 fori=1toMdo
A —1 T 11 1. 5 Output 6;(N, K) = median{tr( Oippy) ), -.. , tr( Oip ) ¢- B> Median of means
PN= M (UN|bN><bN‘ UN) } estimation { ( ) ( )}

 The classical shadow of size N is:

e The ensambles for random U chosen are:

> Clifford measurement M,'(X)=(2"+1)X-1. (n-qubit Clifford unitaries)

» Pauli measurement M;'= @ M. (single-qubit Clifford unitaries, we
measure each qubit in a Pauli basis)




Performance guarantees & Information-theoretic bounds

Theorem 1 (informal version). Classical shadows of size Nsufficeto  The two theorems states that:

predict M arbitrary linear target functions tr(Oyp), ... ,tr(Opp) up
to additive error € given that N> (order) log (M)max;||Oi||5. ... /€%

The definition of the norm ||O|| 0w depends on the ensemble of uni-
tary transformations used to create the classical shadow.

Theorem 2 (informal version). Any procedure based on single-copy
measurements, that can predict any M linear functions tr(O;p) up to

additive error €, requires at least (order) log (M) max;||O;[|5.. 40w /€

measurements.

Classical shadows have a minimum
number of single measurements to
achieve an accurate prediction of M
functions.

This number is reached
unavoidably.




Numerical experiments

« Use of synthetic data (up to 160 qubits) Neural Network Quantum State
e Compare classical shadows with NNQST Tomography
It is a generative model based on DNN
_ . . trained on independent quantum
The task is to learn a classical representation | measurement outcomes with local

SIC\tetrahedral positive-operator valued

of an unknown quantum state and using the measures (POVMs)

representation to predict various properties.




Quantum fidelity
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Fig. 2 | Predicting quantum fidelities using classical shadows (Clifford measurements) and NNQST. a, Number of measurements required to identify an
n-qubit GHZ state with 0.99 fidelity. The shaded regions show the s.d. of the needed number of experiments over 10 independent runs. The dashed lines
are the linear regression lines for the number of experiments under different system sizes. b, Estimated fidelity between a perfect GHZ target state and a
noisy preparation, where Z errors can occur with probability p € [0, 1], under 6 X 10* experiments. The dotted line represents the true fidelity as a function
of p. NNQST can only estimate an upper bound on quantum fidelity efficiently, so we consider this upper bound for NNQST and use quantum fidelity for

the classical shadow.
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Two-point correlation functions

Two-point function (s, - &) on
2D Heisenberg model
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Fig. 3 | Predicting two-point correlation functions using classical shadows (Pauli measurements) and NNQST. a, Predictions of two-point functions
(6567) for ground states of the 1D critical antiferromagnetic TFIM with 50 lattice sites. These are based on 2" random Pauli measurements. b, Predictions
of two-point functions (o - @;) for the ground state of the 2D antiferromagnetic Heisenberg model with 8 x 8 lattice sites. The predictions are based

on 2" random Pauli measurements. ¢, Classical processing time (CPU time in seconds) and prediction error (the largest among all pairs of two-point
correlations) over different numbers of measurements: {27, ..., 2}. The quantum measurement scheme in classical shadows (Pauli) is the same as

the POVM-based neural network tomography (NNQST) in ref. °. The only difference is the classical post-processing. As the number of measurements

increases, the processing time increases, while the prediction error decreases.
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Entanglement entropy
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disordered Heisenberg model
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Fig. 4 | Predicting entanglement Rényi entropies using classical shadows (Pauli measurements) and the Brydges et al. protocol. a, Prediction of
second-order Rényi entanglement entropy for all subsystems of size at most two in the approximate ground state of a disordered Heisenberg spin chain
with 10 sites and open boundary conditions. The classical shadow is constructed from 2,500 quantum measurements. The predicted values using the
classical shadow visually match the true values with a maximum prediction error of 0.052. The Brydges et al. protocol®” results in a maximum prediction
error of 0.24. b, Comparison of classical shadows and the Brydges et al. protocol® for estimating second-order Rényi entanglement entropy in GHZ states.
We consider the entanglement entropy of the subsystem with size n/2 on the left side.




Lattice Schwinger model
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Fig. 5 | Application of classical shadows (Pauli measurements) to variational quantum simulation of the lattice Schwinger model. a, An illustration of
variational quantum simulation and the role of classical shadows. b, Comparison between different approaches in the number of measurements needed
to predict all 4-local Pauli observables in the expansion of ((H — (H}9)2>9 with an error equivalent to measuring each Pauli observable at least 100 times.
We include a linear-scale plot that compares classical shadows with the original hand-designed measurement scheme in ref. ® (left) and a log-scale plot
that compares with other approaches (right). In the linear-scale plot, (XT) indicates that the original scheme uses T times the number of measurements
compared to classical shadows (derandomized).




Conclusions

« C(Classical shadows use relatively small n° of state copies to gain a
classical description af a quantum state.

* Pauli measurement can be implemented efficiently on actual
quantum hardwares to predict many properties of the system.

* New method allowing classical machine learning to be used for
many-body physics and other applications.
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