Continuous Normalizing

Flows for Lattice QCD

based on Trivializing Maps

Dr. Simone Bacchio

Computational Scientist
CaSToRC, The Cyprus Institute

A work in collaboration with Pan Kessel, Stefan Schaefer, Lorenz Vaitl

PRACE-6IP, WP8 "Forward Looking Software Solutions". Grant agreement ID: 823767, Project name: LyNcs.

Generative Models

$$\mathbf{x} = f(\mathbf{z}) \longrightarrow \log p_{\mathbf{x}}(\mathbf{x}) = \log p_{\mathbf{z}}(\mathbf{z}) - \log \det \left| \frac{\partial f(\mathbf{z})}{\partial \mathbf{z}} \right|$$

- First normalizing flows arXiv:1505.05770
 - Restrict functional form of f for simplified determinant
 - Non-tractable analytic inverse of $f \rightarrow Not$ trainable on data
- Autoregressive transformations arXiv:1606.04934
 - Use autoregressive models for <u>lower-triangular Jacobian</u>
 - Expensive inverse of f, which requires D applications of f

- Cost of det?Inverse of f?

- Partitioned transformations arXiv:1605.08803
 - Use partitioning and affine transformations for cheap det and inverse of f

From discrete to continuous

$$\mathbf{x} = f(\mathbf{z}) \longrightarrow \log p_{\mathbf{x}}(\mathbf{x}) = \log p_{\mathbf{z}}(\mathbf{z}) - \log \det \left| \frac{\partial f(\mathbf{z})}{\partial \mathbf{z}} \right|$$

$$\mathbf{h}_{t+1} = \mathbf{h}_t + f(\mathbf{h}_t, \theta_t) \xrightarrow{?} \frac{d\mathbf{h}(t)}{dt} = f(\mathbf{h}(t), t, \theta)$$

From discrete to continuous

$$\mathbf{x} = f(\mathbf{z}) \longrightarrow \log p_{\mathbf{x}}(\mathbf{x}) = \log p_{\mathbf{z}}(\mathbf{z}) - \log \det \left| \frac{\partial f(\mathbf{z})}{\partial \mathbf{z}} \right|$$

Neural Ordinary Differential Equations

arXiv:1806.07366

Ricky T. Q. Chen*, Yulia Rubanova*, Jesse Bettencourt*, David Duvenaud University of Toronto, Vector Institute {rtqichen, rubanova, jessebett, duvenaud}@cs.toronto.edu

$$\frac{d\mathbf{z}}{dt} = f(\mathbf{z}(t), t) \longrightarrow \log p(\mathbf{z}(t_1)) = \log p(\mathbf{z}(t_0)) - \int_{t_0}^{t_1} \operatorname{Tr}\left(\frac{\partial f}{\partial \mathbf{z}(t)}\right) dt$$

$$\mathbf{x} = \mathbf{z}(t_1) = \mathbf{z}(t_0) + \int_{t_0}^{t_1} f(\mathbf{z}(t), t, \theta) dt$$
 \quad \text{Tr cheaper} \text{No inverse required}

CNF for LFT

How to define
$$\dot{U}\equiv rac{dU}{dt}=f(U,t)$$
 ???

where U is in SU(N)

ODEs on manifolds

$$\dot{U} = g(U)U$$
 where $U \in ext{Group}$ $g \in ext{Algebra}$

- g(U) must be element of the algebra
- Imposing Gauge invariance:

$$U_{\mu}(x)
ightarrow\Omega(x)U_{\mu}(x)\Omega^{\dagger}(x+\mu)$$
 \longrightarrow $\left[g(U_{\mu}(x))
ightarrow\Omega(x)g(U_{\mu}(x))\Omega^{\dagger}(x)
ight]$

Strong constraints on g(U), how to satisfy these properties?

$$egin{aligned} g(U_{\mu}(x)) &= \partial_{x,\mu} ilde{S}(U) \ \dot{U} &= \left(\partial_{x,\mu} ilde{S}(U)
ight) U \end{aligned}$$

arXiv:0907.5491

Trivializing maps, the Wilson flow and the HMC algorithm

Martin Lüscher

CERN, Physics Department, 1211 Geneva 23, Switzerland

where

$$ilde{S}(U) = \sum_i c_i W_i(U)$$
 and $W(U) = \sum_{x,\mu} \operatorname{Re} \operatorname{Tr}(U_\mu(x) \Sigma_\mu(x))$

Proof of properties

$$\partial_{x,\mu} ilde{S}(U) = \sum_i c_i \sum_{y,
u} \partial_{x,\mu} ext{Tr}igl(U_
u(y)\Sigma_
u(y) + U_
u^\dagger(y)\Sigma_
u^\dagger(y)igr)$$

• Is it element of the algebra?

$$egin{aligned} T_a \partial_{x,\mu}^a \mathrm{Tr}ig(U_\mu(x)\Sigma_\mu(x) + U_\mu^\dagger(x)\Sigma_\mu^\dagger(x)ig) &= T_a \mathrm{Tr}ig(T_a U_\mu(x)\Sigma_\mu(x) - \Sigma_\mu^\dagger(x) U_\mu^\dagger(x)T_aig) \ &\equiv T_a \mathrm{Tr}ig(T_a (U_\mu(x)\Sigma_\mu(x) - U_\mu^\dagger(x)\Sigma_\mu^\dagger(x))ig) \ M - M^\dagger &= ilpha_0 1 + \sum_b lpha_b T_b &\Longrightarrow &= T_a \sum_b lpha_b \mathrm{Tr}(T_a T_b) \ &= -rac{1}{2} T_a \sum_b lpha_b \delta_{ab} = -rac{1}{2} \sum_b lpha_b T_b & \Box \end{aligned}$$

Proof of properties

$$\partial_{x,\mu} ilde{S}(U) = \sum_i c_i \sum_{y,
u} \partial_{x,\mu} ext{Tr}igl(U_
u(y)\Sigma_
u(y) + U_
u^\dagger(y)\Sigma_
u^\dagger(y)igr)$$

ullet Does it transform as $\,g(U_{\mu}(x)) o\Omega(x)g(U_{\mu}(x))\Omega^{\dagger}(x)\,$?

$$\partial_{x,\mu} {
m Tr}igl(U_{\mu}(x)\Sigma_{\mu}(x) + U_{\mu}^{\dagger}(x)\Sigma_{\mu}^{\dagger}(x)igr) = -rac{1}{2} \Big(U_{\mu}(x)\Sigma_{\mu}(x) - \Sigma_{\mu}^{\dagger}(x)U_{\mu}^{\dagger}(x) - ilpha_0 1\Big)$$

if $U_{\mu}(x)\Sigma_{\mu}(x)$ is a closed path, then

$$U_{\mu}(x)
ightarrow \Omega(x) U_{\mu}(x) \Omega^{\dagger}(x+\mu) \hspace{0.5cm} \longrightarrow \hspace{0.5cm} \partial_{x,\mu} ilde{S}(U)
ightarrow \Omega(x) \partial_{x,\mu} ilde{S}(U) \Omega^{\dagger}(x)$$

$$egin{aligned} g(U_{\mu}(x)) &= \partial_{x,\mu} ilde{S}(U) \ \dot{U} &= \left(\partial_{x,\mu} ilde{S}(U)
ight) U \end{aligned}$$

arXiv:0907.5491

Trivializing maps, the Wilson flow and the HMC algorithm

Martin Lüscher

CERN, Physics Department, 1211 Geneva 23, Switzerland

Lüscher ansatz satisfies all properties, but...

- Does the force of any gauge invariant quantity satisfy the properties?
- Are there more generic approaches to define g(U)?
- Is it Lüscher ansatz good enough to define a CNF?

$$egin{aligned} g(U_{\mu}(x)) &= \partial_{x,\mu} ilde{S}(U) \ \dot{U} &= \left(\partial_{x,\mu} ilde{S}(U)
ight) U \end{aligned}$$

arXiv:0907.5491

Trivializing maps, the Wilson flow and the HMC algorithm

Martin Lüscher

CERN, Physics Department, 1211 Geneva 23, Switzerland

$$\frac{d\mathbf{z}}{dt} = f(\mathbf{z}(t), t) \longrightarrow \log p(\mathbf{z}(t_1)) = \log p(\mathbf{z}(t_0)) - \int_{t_0}^{t_1} \operatorname{Tr}\left(\frac{\partial f}{\partial \mathbf{z}(t)}\right) dt$$

$$\mathbf{x} = \mathbf{z}(t_1) = \mathbf{z}(t_0) + \int_{t_0}^{t_1} f(\mathbf{z}(t), t, \theta) dt \qquad \text{Reminder about CNF}$$

$$egin{aligned} g(U_{\mu}(x)) &= \partial_{x,\mu} ilde{S}(U) \ \dot{U} &= \left(\partial_{x,\mu} ilde{S}(U)
ight) U \end{aligned}$$

arXiv:0907.5491

Trivializing maps, the Wilson flow and the HMC algorithm

Martin Lüscher

CERN, Physics Department, 1211 Geneva 23, Switzerland

Another result from his work: Lüscher already discovered CNFs!

$$\log p(U(t_1)) = \log p(U(t_0)) - \int_{t_0}^{t_1} \mathcal{L} ilde{S}(U) dt$$

where
$$\mathcal{L} ilde{S}(U) = -\sum_{x,\mu,a} \partial^a_{x,\mu} \partial^a_{x,\mu} ilde{S}(U)$$

Laplacian of action

$$egin{aligned} \mathcal{L} ilde{S}(U) &= -\sum_{x,\mu,a} \partial_{x,\mu}^a \partial_{x,\mu}^a ilde{S}(U) \ &= -\sum_i c_i \sum_{x,\mu,a} \sum_{y,
u} \partial_{x,\mu}^a \partial_{x,\mu}^a \partial_{x,\mu}^a ext{Re} ext{Tr}igl(U_
u(y) \Sigma_
u(y)igr) \end{aligned}$$

$$rac{ ext{For loops w/o}}{ ext{repeated links}} = -\sum_i c_i \sum_{x,\mu,a} ext{Re} ext{Tr} ig(T^a T^a U_\mu(x) \Sigma_\mu(x) ig)$$

Laplacian of action

$$egin{aligned} \mathcal{L} ilde{S}(U) &= -\sum_{x,\mu,a} \partial_{x,\mu}^a \partial_{x,\mu}^a ilde{S}(U) \ &= -\sum_i c_i \sum_{x,\mu,a} \sum_{y,
u} \partial_{x,\mu}^a \partial_{x,\mu}^a \partial_{x,\mu}^a ext{Re} ext{Tr}igl(U_
u(y) \Sigma_
u(y)igr) \end{aligned}$$

$$rac{ ext{For loops w/o}}{ ext{repeated links}} = -\sum_i c_i \sum_{x,\mu,a} ext{Re} ext{Tr} ig(T^a T^a U_\mu(x) \Sigma_\mu(x) ig)$$

Using the completeness
$$=rac{N^2-1}{2N}\sum_i c_i\sum_{x,\mu} ext{Re} ext{Tr}ig(U_\mu(x)\Sigma_\mu(x)ig) = rac{N^2-1}{2N} ilde{S}(U)$$

$$\sum_a T^a_{\alpha\beta} T^a_{\gamma\delta} = -rac{1}{2} \left(\delta_{\alpha\delta} \delta_{\beta\gamma} - rac{1}{N} \delta_{\alpha\beta} \delta_{\gamma\delta}
ight)
ightharpoonup \sum_a T^a_{\alpha\beta} T^a_{\beta\delta} = -rac{N^2 - 1}{2N} \delta_{\alpha\delta}$$

Our work: from Trivializing Maps to CNF

1. Time-dependence in the coefficients

$$ilde{S}(U) = \sum_i c_i(t) W_i(U)$$

- 2. Training of the coefficients via minimization of the KL divergence
- 3. Calculation of the gradients via back-propagation
- 4. Generic implementation for any Wilson loop
- 5. ...

Mapping from uniform distribution:

$$L_{KL} = S_{ ext{target}}(U_T) + \int_0^1 \mathcal{L} ilde{S}(U_t) dt$$

Software

- Developed using Python and Lyncs-API
- Numpy implementation for S(N) in M-dimensions
- On GPU via Quda for SU(3) in 2/3/4-dimensions
- Logic for dealing with any-size closed loop

Python ecosystem for Lattice QCD

Degeneracy of integral

Let's be less ambitious: 4²

Let's be less ambitious: 82

Let's be less ambitious: 16²

What's more? Loops with repeated links!

Issues:

- Much more difficult lagrangian
- Product of traces and shifts

Questions:

- How to generalize them?
- o Will they help?

arXiv:0907.5491

Trivializing maps, the Wilson flow and the HMC algorithm

Martin Lüscher

CERN, Physics Department, 1211 Geneva 23, Switzerland

$$\mathfrak{L}_0 \mathcal{W}_2 = \frac{31}{3} \mathcal{W}_2 + \mathcal{W}_4, \quad \mathfrak{L}_0 \mathcal{W}_5 = \frac{28}{3} \mathcal{W}_5 + 4 \mathcal{W}_6,$$

$$\mathfrak{L}_0 \mathcal{W}_3 = 11 \mathcal{W}_3 - \mathcal{W}_1, \quad \mathfrak{L}_0 \mathcal{W}_6 = \frac{28}{3} \mathcal{W}_6 + 4 \mathcal{W}_5,$$

$$\mathfrak{L}_0 \mathcal{W}_4 = \frac{31}{3} \mathcal{W}_4 + \mathcal{W}_2, \quad \mathfrak{L}_0 \mathcal{W}_7 = 12 \mathcal{W}_7 + \text{constant}.$$

Giving a closer loop

$$\mathbb{R}_{(6)} + \mathbb{R}_{(6)} + \mathbb{R}_{(6)} + \mathbb{R}_{(6)}$$

$$\operatorname{Re}(\operatorname{Tr}(W))^2 + \operatorname{Im}(\operatorname{Tr}(W))^2$$

$$\operatorname{Im}(\operatorname{Tr}(W))^2$$

Our work: from Trivializing Maps to CNF

1. Time-dependence in the coefficients

$$ilde{S}(U) = \sum_i c_i(t) W_i(U)$$

- 2. Training of the coefficients via minimization of the KL divergence
- 3. Calculation of the gradients via back-propagation
- 4. Generic implementation for any Wilson loop
- 5. Implementation of improved model:

Mapping from uniform distribution:

$$L_{KL} = S_{ ext{target}}(U_T) + \int_0^1 \mathcal{L} ilde{S}(U_t) dt$$

$$ilde{S} = \sum_{i,l,m,n} c_{i,l,m,n}(t) ext{Re}(W_{i,l})^m ext{Im}(W_{i,l})^{2n}$$
 with $W_{i,l} \equiv ext{Tr}(W_i(U)^l)$

Latest results: NMCMC, 16², β=6

$$L_{KL} = S_{ ext{target}}(U_T) + \int_0^1 \mathcal{L} ilde{S}(U_t) dt$$

Acceptance probability:

$$\min\left(1,rac{\exp(-L_{KL}')}{\exp(-L_{KL})}
ight)$$

when sampling from uniform distribution

Latest results: NMCMC, 16², β=6

Latest results: NMCMC, 16², β=6

Conclusion

• Results for 16^2 at β =6:

0.1%

0.5%

Goal

≥48%

2 params (plaq. + rect.)

8 params

(plaq. + rect.)
$$x$$

(re,re²,im²,w²)

16 params

(plaq. + rect.) x (re,re²,im²,w²) x 2 time (spline) **O(10k) params?** [MIT, 2008.05456]

- Achievements:
- > Physical interpretation of parameters
- Parameter transferring over volume
- GPU and distributed implementation via QUDA
- Generalization of Luesher approach
- Parameter tuning via back propagation

Open issues:

- Sub-performing compared to normalizing flows
- Manual implementation of models, not via ML libraries
- Unstable tuning of time dependence due to degeneracy
- > Fermions not implemented yet, but doable
- ➤ Integrator scaling when combining Lie groups and scalar
- Much more work to do and many idea... Working on first publication. Stay tuned!

Continuous Normalizing

Flows for Lattice QCD

based on Trivializing Maps

Thank you for your attention!

Dr. Simone Bacchio

Computational Scientist
CaSToRC, The Cyprus Institute

A work in collaboration with Pan Kessel, Stefan Schaefer, Lorenz Vaitl

PRACE-6IP, WP8 "Forward Looking Software Solutions". Grant agreement ID: 823767, Project name: LyNcs.

Runge-Kutta Integrators for scalar quantities

$$egin{aligned} rac{dy}{dt} &= f(t,y) \ y_{n+1} &= y_n + h \sum_{i=1}^s b_i k_i \ k_1 &= f(t_n,y_n), \ k_2 &= f(t_n + c_2 h, y_n + h(a_{21} k_1)), \ k_3 &= f(t_n + c_3 h, y_n + h(a_{31} k_1 + a_{32} k_2)), \ dots \ k_i &= f\left(t_n + c_i h, y_n + h \sum_{i=1}^{i-1} a_{ij} k_j
ight). \end{aligned}$$

lpha
eq 0, 2/3, 1

Crouch-Grossman methods for Lie Groups

$$egin{aligned} \dot{U} &= g(U)U \ k_i &= g(U^{(i)}) \ U^{(i)} &= e^{ha_{i,i-1}k_{i-1}} \dots e^{ha_{i,1}k_1}U_n \ U_{n+1} &= e^{hb_sk_s} \dots e^{hb_1k_1}U_n \end{aligned}$$

order 1:
$$\sum_{i} b_{i} = 1$$

order 2: $\sum_{i} b_{i}c_{i} = 1/2$
order 3: $\sum_{i} b_{i}c_{i}^{2} = 1/3$ $\sum_{ij} b_{i}a_{ij}c_{j} = 1/6$
 $\sum_{i} b_{i}^{2}c_{i} + 2\sum_{i < j} b_{i}c_{i}b_{j} = 1/3$

13/51 -2/3

24/17

How to combine scalars' and Lie groups' integration?

$$egin{aligned} U_{n+1} &= \left(\prod_{i=1}^s e^{hb_i k_i}
ight) U_n \ k_i &= g(U^{(i)}) \ U^{(i)} &= \left(\prod_{j=1}^{i-1} e^{ha_{ij} k_{i-1}}
ight) U_n \end{aligned}$$

Different coefficient from standard RK

$$egin{aligned} y_{n+1} &= y_n + h \sum_{i=1}^s b_i k_i \ k_i &= f(U^{(i)}, y^{(i)}) \ y^{(i)} &= y_n + h \sum_{j=1}^{i-1} a_{ij} k_j \end{aligned}$$

Needed for: Laplacian, gradients, etc..

- Currently we use O(3) for Lie groups, how does scalar integration scale? Can we have a scheme that has O(3) for both? Maybe with 4 steps?