Continuous Normalizing

Flows for Lattice QCD

based on Trivializing Maps

Dr. Simone Bacchio

Computational Scientist
CaSToRC, The Cyprus Institute

A work in collaboration with
Pan Kessel, Stefan Schaefer, Lorenz Vaitl

Generative Models

$$
\mathbf{x}=f(\mathbf{z}) \longrightarrow \log p_{\mathbf{x}}(\mathbf{x})=\log p_{\mathbf{z}}(\mathbf{z})-\log \operatorname{det}\left|\frac{\partial f(\mathbf{z})}{\partial \mathbf{z}}\right|
$$

$>$ First normalizing flows arXiv:1505.05770

- Restrict functional form of f for simplified determinant
- Non-tractable analytic inverse of $f \rightarrow$ Not trainable on data
> Autoregressive transformations arXiv:1606.04934
- Use autoregressive models for lower-triangular Jacobian

$$
\begin{aligned}
& >\text { Cost of det? } \\
& >\text { Inverse of f? }
\end{aligned}
$$

- Expensive inverse of f, which requires D applications of f
$>$ Partitioned transformations arXiv:1605.08803
- Use partitioning and affine transformations for cheap det and inverse of f

From discrete to continuous

$$
\mathbf{x}=f(\mathbf{z}) \longrightarrow \log p_{\mathbf{x}}(\mathbf{x})=\log p_{\mathbf{z}}(\mathbf{z})-\log \operatorname{det}\left|\frac{\partial f(\mathbf{z})}{\partial \mathbf{z}}\right|
$$

From discrete to continuous

$$
\mathbf{x}=f(\mathbf{z}) \longrightarrow \log p_{\mathbf{x}}(\mathbf{x})=\log p_{\mathbf{z}}(\mathbf{z})-\log \operatorname{det}\left|\frac{\partial f(\mathbf{z})}{\partial \mathbf{z}}\right|
$$

Neural Ordinary Differential Equations arXiv:1806.07366
Ricky T. Q. Chen*, Yulia Rubanova*, Jesse Bettencourt*, David Duvenaud
University of Toronto, Vector Institute

$$
\begin{aligned}
& \frac{d \mathbf{z}}{d t}=f(\mathbf{z}(t), t) \longrightarrow \log p\left(\mathbf{z}\left(t_{1}\right)\right)=\log p\left(\mathbf{z}\left(t_{0}\right)\right)-\int_{t_{0}}^{t_{1}} \operatorname{Tr}\left(\frac{\partial f}{\partial \mathbf{z}(t)}\right) d t \\
& \longrightarrow \mathbf{x}=\mathbf{z}\left(t_{1}\right)=\mathbf{z}\left(t_{0}\right)+\int_{t_{0}}^{t_{1}} f(\mathbf{z}(t), t, \theta) d t \quad \begin{array}{lr}
& \quad \text { Tr cheaper } \\
& \text { No inverse required }
\end{array} \\
&
\end{aligned}
$$

CNF for LFT

$$
\begin{aligned}
\text { How to define } \dot{U} \equiv \frac{d U}{d t}=f & (U, t) \text { ??? } \\
& \quad \text { where } U \text { is in } S U(N)
\end{aligned}
$$

ODEs on manifolds

$$
\dot{U}=g(U) U \quad \text { where } \quad \begin{aligned}
& U \in \quad \text { Group } \\
& g \in \quad \text { Algebra }
\end{aligned}
$$

- $g(U)$ must be element of the algebra
- Imposing Gauge invariance:

$$
U_{\mu}(x) \rightarrow \Omega(x) U_{\mu}(x) \Omega^{\dagger}(x+\mu) \quad \square g\left(U_{\mu}(x)\right) \rightarrow \Omega(x) g\left(U_{\mu}(x)\right) \Omega^{\dagger}(x)
$$

- Strong constraints on $g(U)$, how to satisfy these properties?

Lüscher's ansatz

$$
\begin{gathered}
g\left(U_{\mu}(x)\right)=\partial_{x, \mu} \tilde{S}(U) \\
\dot{U}=\left(\partial_{x, \mu} \tilde{S}(U)\right) U
\end{gathered}
$$

arXiv:0907.5491

Trivializing maps, the Wilson flow and the HMC algorithm

Martin Lüscher

CERN, Physics Department, 1211 Geneva 23, Switzerland
where

$$
\tilde{S}(U)=\sum_{i} c_{i} W_{i}(U) \quad \text { and } \quad W(U)=\sum_{x, \mu} \operatorname{Re} \operatorname{Tr}\left(U_{\mu}(x) \Sigma_{\mu}(x)\right)
$$

Proof of properties

$$
\partial_{x, \mu} \tilde{S}(U)=\sum_{i} c_{i} \sum_{y, \nu} \partial_{x, \mu} \operatorname{Tr}\left(U_{\nu}(y) \Sigma_{\nu}(y)+U_{\nu}^{\dagger}(y) \Sigma_{\nu}^{\dagger}(y)\right)
$$

- Is it element of the algebra?

$$
\begin{aligned}
T_{a} \partial_{x, \mu}^{a} \operatorname{Tr}\left(U_{\mu}(x) \Sigma_{\mu}(x)+U_{\mu}^{\dagger}(x) \Sigma_{\mu}^{\dagger}(x)\right) & =T_{a} \operatorname{Tr}\left(T_{a} U_{\mu}(x) \Sigma_{\mu}(x)-\Sigma_{\mu}^{\dagger}(x) U_{\mu}^{\dagger}(x) T_{a}\right) \\
& \equiv T_{a} \operatorname{Tr}\left(T_{a}\left(U_{\mu}(x) \Sigma_{\mu}(x)-U_{\mu}^{\dagger}(x) \Sigma_{\mu}^{\dagger}(x)\right)\right) \\
M-M^{\dagger}=i \alpha_{0} 1+\sum_{b} \alpha_{b} T_{b} \longrightarrow & =T_{a} \sum_{b} \alpha_{b} \operatorname{Tr}\left(T_{a} T_{b}\right) \\
& =-\frac{1}{2} T_{a} \sum_{b} \alpha_{b} \delta_{a b}=-\frac{1}{2} \sum_{b} \alpha_{b} T_{b}
\end{aligned}
$$

Proof of properties

$$
\partial_{x, \mu} \tilde{S}(U)=\sum_{i} c_{i} \sum_{y, \nu} \partial_{x, \mu} \operatorname{Tr}\left(U_{\nu}(y) \Sigma_{\nu}(y)+U_{\nu}^{\dagger}(y) \Sigma_{\nu}^{\dagger}(y)\right)
$$

- Does it transform as $g\left(U_{\mu}(x)\right) \rightarrow \Omega(x) g\left(U_{\mu}(x)\right) \Omega^{\dagger}(x)$?

$$
\begin{aligned}
& \partial_{x, \mu} \operatorname{Tr}\left(U_{\mu}(x) \Sigma_{\mu}(x)+U_{\mu}^{\dagger}(x) \Sigma_{\mu}^{\dagger}(x)\right)=-\frac{1}{2}\left(U_{\mu}(x) \Sigma_{\mu}(x)-\Sigma_{\mu}^{\dagger}(x) U_{\mu}^{\dagger}(x)-i \alpha_{0} 1\right) \\
& \text { if } U_{\mu}(x) \Sigma_{\mu}(x) \text { is a closed path, then } \\
& U_{\mu}(x) \rightarrow \Omega(x) U_{\mu}(x) \Omega^{\dagger}(x+\mu) \longrightarrow \partial_{x, \mu} \tilde{S}(U) \rightarrow \Omega(x) \partial_{x, \mu} \tilde{S}(U) \Omega^{\dagger}(x)
\end{aligned}
$$

Lüscher's ansatz

$$
\begin{gathered}
g\left(U_{\mu}(x)\right)=\partial_{x, \mu} \tilde{S}(U) \\
\dot{U}=\left(\partial_{x, \mu} \tilde{S}(U)\right) U
\end{gathered}
$$

arXiv:0907.5491

Trivializing maps, the Wilson flow and the HMC algorithm

Martin Lüscher
CERN, Physics Department, 1211 Geneva 23, Switzerland

Lüscher ansatz satisfies all properties, but...

- Does the force of any gauge invariant quantity satisfy the properties?

?

- Are there more generic approaches to define $\mathrm{g}(\mathrm{U})$?
- Is it Lüscher ansatz good enough to define a CNF?

Lüscher's ansatz

$$
\begin{gathered}
g\left(U_{\mu}(x)\right)=\partial_{x, \mu} \tilde{S}(U) \\
\dot{U}=\left(\partial_{x, \mu} \tilde{S}(U)\right) U
\end{gathered}
$$

Trivializing maps, the Wilson flow and the HMC algorithm

Martin Lüscher

CERN, Physics Department, 1211 Geneva 23, Switzerland

$$
\begin{array}{r}
\frac{d \mathbf{z}}{d t}=f(\mathbf{z}(t), t) \longrightarrow \log p\left(\mathbf{z}\left(t_{1}\right)\right)=\log p\left(\mathbf{z}\left(t_{0}\right)\right)-\int_{t_{0}}^{t_{1}} \operatorname{Tr}\left(\frac{\partial f}{\partial \mathbf{z}(t)}\right) d t \\
\longrightarrow \mathbf{x}=\mathbf{z}\left(t_{1}\right)=\mathbf{z}\left(t_{0}\right)+\int_{t_{0}}^{t_{1}} f(\mathbf{z}(t), t, \theta) d t \\
\text { Reminder about CNF }
\end{array}
$$

Lüscher's ansatz

$$
\begin{gathered}
g\left(U_{\mu}(x)\right)=\partial_{x, \mu} \tilde{S}(U) \\
\dot{U}=\left(\partial_{x, \mu} \tilde{S}(U)\right) U
\end{gathered}
$$

Trivializing maps, the Wilson flow and the HMC algorithm

Martin Lüscher
CERN, Physics Department, 1211 Geneva 23, Switzerland

- Another result from his work: Lüscher already discovered CNFs!

$$
\begin{aligned}
& \log p\left(U\left(t_{1}\right)\right)=\log p\left(U\left(t_{0}\right)\right)-\int_{t_{0}}^{t_{1}} \mathcal{L} \tilde{S}(U) d t \\
& \text { where } \quad \mathcal{L} \tilde{S}(U)=-\sum_{x, \mu, a} \partial_{x, \mu}^{a} \partial_{x, \mu}^{a} \tilde{S}(U)
\end{aligned}
$$

Laplacian of action

$$
\begin{aligned}
\mathcal{L} \tilde{S}(U) & =-\sum_{x, \mu, a} \partial_{x, \mu}^{a} \partial_{x, \mu}^{a} \tilde{S}(U) \\
& =-\sum_{i} c_{i} \sum_{x, \mu, a} \sum_{y, \nu} \partial_{x, \mu}^{a} \partial_{x, \mu}^{a} \operatorname{Re} \operatorname{Tr}\left(U_{\nu}(y) \Sigma_{\nu}(y)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { For loops w/o }}{\text { repeated links }}=-\sum_{i} c_{i} \sum_{x, \mu, a} \operatorname{Re} \operatorname{Tr}\left(T^{a} T^{a} U_{\mu}(x) \Sigma_{\mu}(x)\right)
\end{aligned}
$$

Laplacian of action

$$
\begin{aligned}
\mathcal{L} \tilde{S}(U) & =-\sum_{x, \mu, a} \partial_{x, \mu}^{a} \partial_{x, \mu}^{a} \tilde{S}(U) \\
& =-\sum_{i} c_{i} \sum_{x, \mu, a} \sum_{y, \nu} \partial_{x, \mu}^{a} \partial_{x, \mu}^{a} \operatorname{Re} \operatorname{Tr}\left(U_{\nu}(y) \Sigma_{\nu}(y)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { For loops w/o }}{\text { repeated links }}=-\sum_{i} c_{i} \sum_{x, \mu, a} \operatorname{Re} \operatorname{Tr}\left(T^{a} T^{a} U_{\mu}(x) \Sigma_{\mu}(x)\right) \\
& \hline
\end{aligned}
$$

$$
\begin{gathered}
\text { Uning the } \\
\text { conpleitess } \\
\text { refion }
\end{gathered}=\frac{N^{2}-1}{2 N} \sum_{i} c_{i} \sum_{x, \mu} \operatorname{Re} \operatorname{Tr}\left(U_{\mu}(x) \Sigma_{\mu}(x)\right)=\frac{N^{2}-1}{2 N} \tilde{S}(U)
$$

$$
\sum_{a} T_{\alpha \beta}^{a} T_{\gamma \delta}^{a}=-\frac{1}{2}\left(\delta_{\alpha \delta} \delta_{\beta \gamma}-\frac{1}{N} \delta_{\alpha \beta} \delta_{\gamma \delta}\right) \Rightarrow \sum_{a} T_{\alpha \beta}^{a} T_{\beta \delta}^{a}=-\frac{N^{2}-1}{2 N} \delta_{\alpha \delta}
$$

Our work: from Trivializing Maps to CNF

1. Time-dependence in the coefficients

$$
\tilde{S}(U)=\sum_{i} c_{i}(t) W_{i}(U)
$$

2. Training of the coefficients via minimization of the KL divergence
3. Calculation of the gradients via back-propagation
4. Generic implementation for any Wilson loop
5. ...

Mapping from uniform distribution:

$$
L_{K L}=S_{\text {target }}\left(U_{T}\right)+\int_{0}^{1} \mathcal{L} \tilde{S}\left(U_{t}\right) d t
$$

Software

- Developed using Python and Lyncs-API
- Numpy implementation for $\mathrm{S}(\mathrm{N})$ in M-dimensions

- On GPU via Quda for $\operatorname{SU}(3)$ in $2 / 3 / 4$-dimensions
- Logic for dealing with any-size closed loop

$$
\text { E.g. all unique geometries of length } 8 \text { in } 3 D
$$

Python ecosystem for Lattice QCD

First results

Degeneracy of integral

"All equal integrals over the coefficients gives the same result"

- Single-geometry integral is trivially degenerate
- Multiple-geometries integral is also degenerate:
- Numerically tested for length 6... Any proof?
- Large coefficient introduce numerical instabilities
- Is constant enough? Not really!
- How to solve the problem? We could improve it but not solve it

Let's be less ambitious: $\mathbf{4}^{\mathbf{2}}$

Let's be less ambitious: $\mathbf{8}^{\mathbf{2}}$

Let's be less ambitious: $16^{\mathbf{2}}$

What's more? Loops with repeated links!

- Issues:
- Much more difficult lagrangian
- Product of traces and shifts
- Questions:
- How to generalize them?
- Will they help?

$$
\begin{array}{ll}
\mathfrak{L}_{0} \mathcal{W}_{2}=\frac{31}{3} \mathcal{W}_{2}+\mathcal{W}_{4}, & \mathfrak{L}_{0} \mathcal{W}_{5}=\frac{28}{3} \mathcal{W}_{5}+4 \mathcal{W}_{6} \\
\mathfrak{L}_{0} \mathcal{W}_{3}=11 \mathcal{W}_{3}-\mathcal{W}_{1}, & \mathfrak{L}_{0} \mathcal{W}_{6}=\frac{28}{3} \mathcal{W}_{6}+4 \mathcal{W}_{5} \\
\mathfrak{L}_{0} \mathcal{W}_{4}=\frac{31}{3} \mathcal{W}_{4}+\mathcal{W}_{2}, & \mathfrak{L}_{0} \mathcal{W}_{7}=12 \mathcal{W}_{7}+\text { constant }
\end{array}
$$

(2)

(3)

(4)

(5)

(6)

(7)

Giving a closer loop

$$
\begin{aligned}
& \square+\square \quad \operatorname{Re} \operatorname{Tr}\left(W^{2}\right) \\
& \text { (5) } \\
& \text { (6) } \\
& \operatorname{Re}(\operatorname{Tr}(W))^{2}-\operatorname{Im}(\operatorname{Tr}(W))^{2} \\
& \operatorname{Re}(\operatorname{Tr}(W))^{2}+\operatorname{Im}(\operatorname{Tr}(W))^{2} \\
& \operatorname{Re}(\operatorname{Tr}(W))^{2} \\
& \operatorname{Im}(\operatorname{Tr}(W))^{2}
\end{aligned}
$$

Our work: from Trivializing Maps to CNF

1. Time-dependence in the coefficients

$$
\tilde{S}(U)=\sum_{i} c_{i}(t) W_{i}(U)
$$

2. Training of the coefficients via minimization of the KL divergence
3. Calculation of the gradients via back-propagation
4. Generic implementation for any Wilson loop
5. Implementation of improved model:
$\tilde{S}=\sum_{i, l, m, n} c_{i, l, m, n}(t) \operatorname{Re}\left(W_{i, l}\right)^{m} \operatorname{Im}\left(W_{i, l}\right)^{2 n}$ with

Mapping from uniform distribution:

$$
L_{K L}=S_{\text {target }}\left(U_{T}\right)+\int_{0}^{1} \mathcal{L} \tilde{S}\left(U_{t}\right) d t
$$

$$
\text { with } \quad W_{i, l} \equiv \operatorname{Tr}\left(W_{i}(U)^{l}\right)
$$

Latest results: NMCMC, $16^{2}, \beta=6$

Rectangle

$L_{K L}=S_{\text {target }}\left(U_{T}\right)+\int_{0}^{1} \mathcal{L} \tilde{S}\left(U_{t}\right) d t$

Acceptance probability:

$$
\min \left(1, \frac{\exp \left(-L_{K L}^{\prime}\right)}{\exp \left(-L_{K L}\right)}\right)
$$

when sampling from uniform distribution

Latest results: NMCMC, $16^{2}, \beta=6$

Latest results: NMCMC, $16^{2}, \beta=6$

Conclusion

- Results for 16^{2} at $\beta=6$:

0.02\%	0.1\%
2 params (plaq. + rect.)	8 params (plaq. + rect.) x (re, $\mathrm{re}^{2}, \mathrm{im}^{2}, \mathrm{w}^{2}$)

- Achievements:
> Physical interpretation of parameters
$>$ Parameter transferring over volume
$>$ GPU and distributed implementation via QUDA
$>$ Generalization of Luesher approach
$>$ Parameter tuning via back propagation
0.5\%

16 params
(plaq. + rect.) x (re,re ${ }^{2}, \mathrm{im}^{2}, \mathrm{w}^{2}$) x
2 time (spline)

Goal
z48\%
O(10k) params?
[MIT, 2008.05456]

- Much more work to do and many idea... Working on first publication. Stay tuned!

Thank you for your attention!

Continuous Normalizing

 Flows for Lattice QCDbased on Trivializing Maps

Dr. Simone Bacchio

Computational Scientist
CaSToRC, The Cyprus Institute

A work in collaboration with
Pan Kessel, Stefan Schaefer, Lorenz Vaitl

Runge-Kutta Integrators for scalar quantities

$$
\begin{aligned}
\frac{d y}{d t} & =f(t, y) \\
y_{n+1} & =y_{n}+h \sum_{i=1}^{s} b_{i} k_{i} \\
k_{1} & =f\left(t_{n}, y_{n}\right) \\
k_{2} & =f\left(t_{n}+c_{2} h, y_{n}+h\left(a_{21} k_{1}\right)\right), \\
k_{3} & =f\left(t_{n}+c_{3} h, y_{n}+h\left(a_{31} k_{1}+a_{32} k_{2}\right)\right), \\
& \vdots \\
k_{i} & =f\left(t_{n}+c_{i} h, y_{n}+h \sum_{j=1}^{i-1} a_{i j} k_{j}\right) .
\end{aligned}
$$

$$
\alpha \neq 0,2 / 3,1
$$

	0	0	0	0
\%	α	α	0	0
-	1	$1+\frac{1-\alpha}{\alpha(3 \alpha-2)}$	$-\frac{1-\alpha}{\alpha(3 \alpha-2)}$	0
®๊		$\frac{1}{2}-\frac{1}{6 \alpha}$	$\frac{1}{6 \alpha(1-\alpha)}$	$\frac{2-3 \alpha}{6(1-\alpha)}$

Crouch-Grossman methods for Lie Groups

$$
\begin{aligned}
& \dot{U}=g(U) U \\
& \begin{aligned}
k_{i}= & g\left(U^{(i)}\right) \\
U^{(i)}= & e^{h a_{i, i-1} k_{i-1}} \ldots e^{h a_{i, 1} k_{1}} U_{n} \\
U_{n+1}= & e^{h b_{s} k_{s}} \ldots e^{h b_{1} k_{1}} U_{n} \\
& \\
\text { order } 1: \quad & \sum_{i} b_{i}=1 \\
\text { order } 2: & \sum_{i} b_{i} c_{i}=1 / 2 \\
\text { order } 3: \quad & \sum_{i} b_{i} c_{i}^{2}=1 / 3 \quad \sum_{i j} b_{i} a_{i j} c_{j}=1 / 6 \\
& \sum_{i} b_{i}^{2} c_{i}+2 \sum_{i<j} b_{i} c_{i} b_{j}=1 / 3
\end{aligned}
\end{aligned}
$$

How to combine scalars' and Lie groups' integration?

$$
\begin{aligned}
U_{n+1} & =\left(\prod_{i=1}^{s} e^{h b_{i} k_{i}}\right) U_{n} \\
k_{i} & =g\left(U^{(i)}\right) \\
U^{(i)} & =\left(\prod_{j=1}^{i-1} e^{h a_{i j} k_{i-1}}\right) U_{n}
\end{aligned}
$$

- Different coefficient from standard RK

$$
\begin{aligned}
y_{n+1} & =y_{n}+h \sum_{i=1}^{s} b_{i} k_{i} \\
k_{i} & =f\left(U^{(i)}, y^{(i)}\right) \\
y^{(i)} & =y_{n}+h \sum_{j=1}^{i-1} a_{i j} k_{j}
\end{aligned}
$$

- Needed for: Laplacian, gradients, etc..
- Currently we use $O(3)$ for Lie groups, how does scalar integration scale?
- Can we have a scheme that has $O(3)$ for both? Maybe with 4 steps?

