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Introduction and motivation

▸ Consider the grand-canonical partition function at finite µ,

ZGC(µ) = ∫ DU e
−Sb[U]

∫ DψDψ e−ψM[U ;µ]ψ

= ∫ DU e
−Sb[U] detM[U ;µ]

where detM[U ;µ] is highly non-local in U , difficult to calculate. . .

▸ In the Hamiltonian formulation one has

ZGC(µ) = Tr [e
−H(µ)/T ] = Tr∏

t

Tt(µ)

=∑
N

e−Nµ/T ⋅ ZC(N)

where ZC(N) = Tr∏t T
(N)
t .



Step 1: dimensional reduction

▸ The fermion matrix M[U ;µ] has generic (temporal) structure

M =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B0 e+µC ′0 0 . . . ±e−µCLt−1
e−µC0 B1 e+µC ′1 0

0 e−µC1 B2 ⋱ ⋮

⋮ ⋱ ⋱

BLt−2 e+µC ′Lt−2
±e+µC ′Lt−1 0 e−µCLt−2 BLt−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

for which the determinant can be reduced to

detM[U ;µ] =∏
t

det B̃t ⋅ det (1∓e
µLt ⋅ T )

where T = T0 ⋅ . . . ⋅ TLt−1 and Tt = Tt[Bt ,Ct ,C
′
t ].

▸ M[U ;µ] is (L ⋅ Lt) × (L ⋅ Lt), while T is L × L.



Fugacity expansion and canonical determinants

▸ Fugacity expansion

detM[U ;µ] =∑
N

e−N ⋅µ/T ⋅ detNM[U]

yields the canonical determinants

detNM[U] =∑
J

detT /J /J[U] = Tr [∏
t

T
(N)
t ] ,

where detT /J /J is the principal minor of order N.

Key object from step 1:

T [U] ≡
Lt−1
∏
t=0
Tt ⇔ product of spatial matrices
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Fugacity expansion and canonical determinants

Key step 2:

T [U] ≡
Lt−1
∏
t=0
Tt ⇒ detNM[U] =∑

J

detT /J /J[U]

▸ Fugacity expansion:

detM[U ;µ]∝ det (e−µ/T + T [U]) =∑
N

e−N ⋅µ/T ⋅ detNM[U]

▸ Coefficients given by the elementary symmetric functions Sk
of order k of {τi}:

detNM[U] = SL−N(T )

where

Sk(T ) ≡ Sk({τi}) = ∑
1≤i1<⋯<ik≤L

k

∏
j=1
τij = ∑

∣J ∣=k
detT /J /J .



Fugacity expansion and canonical determinants

Key step 2:

T [U] ≡
Lt−1
∏
t=0
Tt ⇒ detNM[U] =∑

J

detT /J /J[U]

▸ Fugacity expansion:

detM[U ;µ]∝ det (e−µ/T + T [U]) =∑
N

e−N ⋅µ/T ⋅ detNM[U]

▸ Coefficients given by the elementary symmetric functions Sk
of order k of {τi}:

detNM[U] = SL−N(T )

where

Sk(T ) ≡ Sk({τi}) = ∑
1≤i1<⋯<ik≤L

k

∏
j=1
τij = ∑

∣J ∣=k
detT /J /J .



Fugacity expansion and canonical determinants

Key step 2:

T [U] ≡
Lt−1
∏
t=0
Tt ⇒ detNM[U] =∑

J

detT /J /J[U]

▸ Fugacity expansion:

detM[U ;µ]∝ det (e−µ/T + T [U]) =∑
N

e−N ⋅µ/T ⋅ detNM[U]

▸ Coefficients given by the elementary symmetric functions Sk
of order k of {τi}:

detNM[U] = SL−N(T )

where

Sk(T ) ≡ Sk({τi}) = ∑
1≤i1<⋯<ik≤L

k

∏
j=1
τij = ∑

∣J ∣=k
detT /J /J .



Canonical determinants

∑
J

detT /J /J[U] = Tr [∏
t

T
(N)
t ]

▸ States are labeled by index sets J ⊂ {1, . . . ,L}, ∣J ∣ = N
▸ number of states grows exponentially with L at half-filling

Nstates = (
L
N
) = Nprincipal minors

▸ Efficient stochastic evaluation of ∑J :

▸ treat index set J as dynamical degree of freedom
▸ update J → J ′ using Fisher-Yates reshuffling and

pJ→J′ = min[1,AJ→J′] with AJ→J′ =

RRRRRRRRRRRR

detT AJ
′

AJ
′

detT AJAJ

RRRRRRRRRRRR

.
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Transfer matrices and factorization

▸ Use Cauchy-Binet formula

det(A ⋅B) /I /K =∑
J

detA /I /J ⋅ detB /J /K

to factorize into product of transfer matrices

▸ Transfer matrices in sector N are hence given by

detT /J /J = det(T0 ⋅ . . . ⋅ TLt−1)
/J /J
= (T0)JI ⋅ (T1)IK ⋅ . . . ⋅ (TLt−1)LJ

with (Tt)IK = det B̃t ⋅ detTt
/I /K and implicit sums {J, I ,K , . . .}.

▸ Finally, we have

detNM[U] =∏
t

det B̃t ⋅ ∑
{Jt}
∏
t

detTt
/Jt−1 /Jt

where ∣Jt ∣ = N and JLt = J0.



Factorization and fermion bags

Key step 3:

∑
J

detT /J /J =∑
J

det(T0 ⋅ . . . ⋅ TLt−1)
/J /J
= (T0)JI ⋅ (T1)IK ⋅ . . . ⋅ (TLt−1)LJ

N = 1
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Dimensional reduction of QCD – Step 1

▸ Consider the Wilson fermion matrix for a single quark with
chemical potential µ:

M±(µ) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B0 P+A
+
0 ±P−A

−
Lt−1

P−A
−
0 B1 P+A

+
1

P−A
−
1 B2 ⋱

⋱ ⋱

P+A
+
Lt−2

±P+A
+
Lt−1 P− BLt−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

▸ temporal hoppings are

A+t = e
+µ
⋅ I4×4 ⊗ Ut = (A−t )

−1

▸ Dirac projectors P± =
1
2
(I ∓ Γ4)

▸ Bt are (spatial) Wilson Dirac operators on time-slice t

▸ all blocks are (4 ⋅Nc ⋅ L
3
s × 4 ⋅Nc ⋅ L

3
s )-matrices



Dimensional reduction of QCD – Step 1

▸ Reduced Wilson fermion determinant is given by

detMp,a(µ)∝∏
t

detQ+t ⋅ det [I ± e
+µLtT ]

where T is the product of spatial matrices given by

T =∏
t

Q+t ⋅ Ut ⋅ (Q
−
t+1)

−1
≡∏

t

Tt

Q±t = BtP∓ + P±, Bt = (
Dt Ct

−Ct Dt
)

and

Q+t = (
1 Ct

0 Dt
) , (Q−t )

−1
= (

D−1t 0
Ct ⋅D

−1
t 1

) .



Structure of building blocks

▸ Product of spatial matrices:

T =∏
t

Q+t ⋅ Ut ⋅ (Q
−
t+1)

−1 or T =∏
t

U
−
t−1 ⋅ (Q

−
t )
−1
⋅Q+t ⋅U

+
t

t − 1 t t + 1

Q+t ⋅ Ut ⋅ (Q−t+1)
−1



Structure of building blocks

▸ Product of spatial matrices:

T =∏
t

Q+t ⋅ Ut ⋅ (Q
−
t+1)

−1 or T =∏
t

U
−
t−1 ⋅ (Q

−
t )
−1
⋅Q+t ⋅ U

+
t

t − 1 t t + 1

U−t−1 ⋅ (Q
−
t )
−1 ⋅Q+t ⋅ U+t



Structure of building blocks

▸ Several ways to rewrite spatial matrices:

T̃t ≡ (Q
−
t )
−1
⋅Q+t = (

1 0
Ct 1

)(
D−1t 0
0 Dt

)(
1 Ct

0 1
)

▸ spectral property and determinant:

λ ↔
1

λ∗
, det(Q−t )

−1
⋅Q+t = 1

▸ Relation to 1d scattering matrix S̃t :

T̃t = (
D−1t D−1t ⋅ Ct

Ct ⋅D
−1
t Dt + Ct ⋅D

−1
t ⋅ Ct

) ⇔ S̃t = (
Ct Dt

Dt −Ct
) .



Canonical projection and factorization – Step 2+3

Step 2: Canonical projection of QCD

detMNq =∏
t

detQ+t ⋅∑
A

detT AAAA

▸ sum is over all index sets A ∈ {1,2, . . . ,2Nmax
q } of size

∣A∣ = Nmax
q +Nq, Nmax

q = 2 ⋅Nc ⋅ L
3
s

▸ i.e., the trace over the minor matrix of rank Nq of T

Step 3: Factorization of QCD determinant

detMNq =∏
t

detQ+t ⋅∏
t

M ((Q−t )
−1
)
ZZAtZBt

M(Q+t )ZBtZC t
M(Ut)ZC tZZAt+1



Relation between quark and baryon number in QCD

Step 3: Factorization of QCD determinant

detMNq =∏
t

detQ+t ⋅∏
t

M ((Q−t )
−1
)
ZZAtZBt

M(Q+t )ZBtZC t
M(Ut)ZC tZZAt+1

▸ Consider Z(Nc)-transformation by zk = e
2πi ⋅k/Nc ∈ Z(Nc):

Ut → U
′
t = zk ⋅ Ut at one fixed t.

▸ As a consequence we have

detMNq → detM ′Nq
=∏

t

detQ+t ⋅∑
A

det(zk ⋅ T )A
AAA = z

−Nq

k ⋅ detMNq

and summing over zk therefore yields

detMNq = 0 forNq ≠ 0modNc .



Properties of minor matrices

Step 3: Factorization of QCD determinant

detMNq =∏
t

detQ+t ⋅∏
t

M ((Q−t )
−1
)
ZZAtZBt

M(Q+t )ZBtZC t
M(Ut)ZC tZZAt+1

▸ Note that

M(Q−1)
AAAB
= (−1)p(A,B)

M̃(Q)BA
detQ

, detQ+t = detQ
−
t

avoids inverting Q−t .

▸ Consider temporal gauge link Wt = I4×4 ⊗U4(x̄ , t) at x̄ :

M(Wt)
Cc t Cat+1

= 0 if ∣ct ∣ ≠ ∣at ∣

for ct ∈ Ct and at+1 ∈ At+1.



Multi-level integration schemes

▸ Temporal gauge links in Ut are completely decoupled:

t − 1 t t + 1

M(Ut−1)ZC t−1ZZAt
⋅M ((Q−t )−1)ZZAtZBt

⋅M(Q+t )ZBtZC t
⋅M(Ut)ZC tZZAt+1

▸ spatial matrix Ut is block diagonal:

⇒ M(Ut) trivial to calculate!



Multi-level integration schemes

▸ Spatial gauge links in Q±t coupled through temporal
plaquettes only:

t − 1 t t + 1

M(Ut−1)ZC t−1ZZAt
⋅M ((Q−t )−1)ZZAtZBt

⋅M(Q+t )ZBtZC t
⋅M(Ut)ZC tZZAt+1

▸ spatial matrices Q±t can be treated together:

M ((Q−t )
−1)

AAtABt
⋅M(Q+t )ABtAC t

=M ((Q−t )
−1
⋅Q+t )AAtAC t



Correlation functions

▸ Source and sink operators S and S:
▸ remove or re-add indices from/to the index set,
▸ potentially change quark number Nq, e.g.,

. . . ⋅T
(Nq)
t−1 ⋅SNq→Nq+3 ⋅T

(Nq+3)
t ⋅ . . . ⋅ T

(Nq+3)
t′ ⋅SNq+3→Nq ⋅T

(Nq)
t′+1 ⋅ . . .

▸ vacuum sector corresponds to Nq = 0

▸ Natural to construct improved estimators:
▸ simulate directly the correlation function at C(t ′ − t),
▸ measure C(t ′ + 1 − t) relative to C(t ′ − t)

⟨C(t ′ + 1 − t)⟩C(t′−t) ∼ e
−aE

from additional insertion T
(Nq)
t′+1 → T

(Nq+3)
t′+1

▸ All spectral information is contained in ⟨T
(Nq)
t ⟩.



Summary and outlook

▸ Complete temporal factorization of the Wilson fermion
determinant:

detMNq =∏
t

detQ+t ⋅∏
t

M ((Q−t )
−1
)
AAtABt

M(Q+t )ABtAC t
M(Ut)

AC tAAt+1

▸ works for fixed quark numbers Nq

▸ allows for very flexible multi-level integration schemes
▸ cf. [Gattringer et al, Giusti et al, Chandrasekharan et al]

Caveats: positivity? potential sign problem?

Q± are strictly positive, (Tt)ZBZC not necessarily. . .



Hubbard model

▸ Consider the Hamiltonian for the Hubbard model

H(µ) = − ∑
⟨x,y⟩,σ

tσ ĉ
†
x,σ ĉy ,σ +∑

x,σ

µσNx,σ +U∑
x

Nx,↑Nx,↓

with particle number Nx ,σ = ĉ
†
x ,σ ĉx ,σ.

▸ Trotter decomposition and coherent state representation yields

ZGC(µ) = ∫ Dψ
†
Dψe−S[ψ

†,ψ;µ]

with Euclidean action

S[ψ†, ψ;µ] =∑
σ

ψ†
σ∇tψσ +H[ψ

†, ψ;µ] .



Hubbard model with Trotter

▸ Consider the Hamiltonian for the Hubbard model

H(µ) = − ∑
⟨x,y⟩,σ

tσ ĉ
†
x,σ ĉy ,σ +∑

x,σ

µσNx,σ +U∑
x

Nx,↑Nx,↓

with particle number Nx ,σ = ĉ
†
x ,σ ĉx ,σ.

▸ Trotter decomposition and coherent state representation yields

ZGC(µ) = ∫ Dψ
†
Dψe−S[ψ

†,ψ;µ]

with Euclidean action

S[ψ†, ψ;µ] =∑
σ

ψ†
σ∇tψσ +H[ψ

†, ψ;µ] .



Hubbard model with Trotter and Stratonovic

▸ Consider the Hamiltonian for the Hubbard model

H(µ) = − ∑
⟨x,y⟩,σ

tσ ĉ
†
x,σ ĉy ,σ +∑

x,σ

µσNx,σ +U∑
x

Nx,↑Nx,↓

with particle number Nx ,σ = ĉ
†
x ,σ ĉx ,σ.

▸ After a Hubbard-Stratonovich transformation we have

ZGC(µ) = ∫ Dψ
†
DψDϕρ[ϕ]e−∑σ S[ψ†

σ,ψσ,ϕ;µσ]

with S[ψ†
σ, ψσ, ϕ;µσ] = ψ

†
σM[ϕ;µσ]ψσ, and hence

= ∫ Dϕρ[ϕ]∏
σ

detM[ϕ;µσ] .



Fermion matrix and dimensional reduction

▸ The fermion matrix has the structure

M[ϕ;µσ] =

⎛
⎜
⎜
⎜
⎝

B 0 . . . ±eµσC(ϕNt−1)
−eµσC(ϕ0) B . . . 0

⋮ ⋱ ⋱ ⋮

0 . . . −eµσC(ϕNt−2) B

⎞
⎟
⎟
⎟
⎠

for which the determinant can be reduced to

detM[ϕ;µσ] = detB
Nt ⋅ det (1 ∓ eNtµσT [ϕ])

where T [ϕ] = B−1C(ϕNt−1) ⋅ . . . ⋅B
−1C(ϕ0).

▸ Transfer matrices are hence given by

(Tt)IK = detB ⋅ det [B
−1
⋅ C(ϕt)]

/I /K

= detB ⋅ det(B−1) /I /J ⋅ detC(ϕt)
/J /K

= (−1)p(I ,J) detBJI
⋅ detC(ϕt)

/J /K .
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Transfer matrices

▸ Since C(ϕt) can be chosen diagonal, we have

detC(ϕt)
/J /K
= δJK∏

x∉J
ϕx,t

and the HS field can be integrated out site by site:

∫ dϕx,t ρ(ϕx,t)ϕ
∑σ δx∉Jσ
x,t ≡ wx,t =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

w2 if x ∉ J↑, x ∉ J↓

w1 else
w0 if x ∈ J↑, x ∈ J↓

▸ Finally, with ∏x wx,t ≡W ({J
σ
t }) we have

ZC({Nσ}) = ∑
{Jσ

t }
∏
t

(∏
σ

detBJσ
t−1J

σ
t )W ({Jσt }) , ∣Jσt ∣ = Nσ



Relation to fermion loop formulation

ZC({Nσ}) = ∑
{Jσ

t }
∏
t

(∏
σ

detBJσ
t−1J

σ
t )W ({Jσt })

index sets Jt :

{3,6}

{4,5}

{4,5}

{2,7}

{2,7}

{3,7}



Relation to fermion bag formulation

▸ In d = 1 dimension the ’fermion bags’ detB IJ can be
calculated analytically:

and one can prove that

detB IJ
≥ 0 for open b.c.

⇒ there is no sign problem

▸ For periodic b.c. there is no sign problem either, because

Z pbc
C (Ls →∞) = Z

obc
C (Ls →∞)


