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» Application to the Hubbard model



» Consider the grand-canonical partition function at finite s,

Zec (1) = _[Du e~ So[U] [DEDQZJ e~ MUl

- f DU e det MU 1]

where det M[U; 1] is highly non-local in U, difficult to calculate. ..

» |n the Hamiltonian formulation one has
Zoc(p) = Tr[e T =T T Te(p)
t

_ Ze‘N“/T -Zc(N)
N

where Z¢(N) =Tr HtTt(N).



Step 1: dimensional reduction

» The fermion matrix M[U; ] has generic (temporal) structure

By Q0 .. Cli1
G B c 0
M _ 0 C:.]_ Bz . . :
Bi.-2 Cl—
¢, 0 Cr—2 Bi1

for which the determinant can be reduced to
det M[U; ] HdetBt det (1 -T)

where T =To-...-T,-1 and T; = T;[B:, G, C[].

M[U; ] is (L- L) x (L- L), while T is Lx L.



» Fugacity expansion

det M[U; p] = > e VT - det yM[U]
N

yields the canonical determinants

det yM[U] = ZdetTXX[u] -Tr [H 7;(N):| ’
J
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where det 7Y is the principal minor of order N.
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where det 7Y is the principal minor of order N.

TU]=][ Tt <  product of spatial matrices






T =] T = detyMU]=> detT U]
J

» Fugacity expansion:

det M[U; 1] o det (e + T[U]) = e/ . det yM[U]
N



T =] T = detyMU]=> detT U]
J

» Fugacity expansion:

det M[U; 1] o det (e + T[U]) = e/ . det yM[U]
N

» Coefficients given by the elementary symmetric functions Sk
of order k of {7;}:

det NM[U] = SL_N(T)

where

K
ST =S({m) = > TIm = det7H.

1i<<ip<l j=1 [J|=k



zj:detT“[u] =Tr [H 7-t(N)]

t

» States are labeled by index sets Jc {1,... L}, |[J]=N

» number of states grows exponentially with L at half-filling

L
Nstates = ( N ) = Nprincipal minors
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zj:detT“[u] =Tr [1:{ 7-t(N)]

» States are labeled by index sets Jc {1,... L}, |[J]=N

» number of states grows exponentially with L at half-filling

L
Nstates = ( N ) = Nprincipal minors

» Efficient stochastic evaluation of ¥ :

> treat index set J as dynamical degree of freedom
» update J — J" using Fisher-Yates reshuffling and

det TX(’\(’

pssy =min[1,Ajp] with  Ajy=———|.
det T




Transfer matrices and factorization

» Use Cauchy-Binet formula
det(A- B)M = 3" det AM.. det B
J

to factorize into product of transfer matrices
» Transfer matrices in sector N are hence given by

det TH =det(To- ... Ti-1)™ = (To) - (T -+ (Te-1)1

with (77)k = det B, - det T;N and implicit sums {J, 1, K,...}.

> Finally, we have

det /\/M[U] = Hdet ét . Z Hdetﬂv\(t—IXz
t {4} t
where |J;| = N and J;, = J.



S det 7 = S det(To- .. Toet) ™ = (o) - (T -+ (Tiam)
5 J



Sdet T =S det(To .. Ti-1) ™ = (To)ur - (T ik - -+ (Ti1) 1
J J
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Sodet 7 =Y det(To- ... TL1)™ = (To) - (T ik -+ (TL-1) L
J J
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Dimensional reduction of QCD — Step 1

» Consider the Wilson fermion matrix for a single quark with
chemical potential p:

Bo P.A; P A
P_A; Bl PA!
M. (,u) = P-4 .Bi2
P.A
LP.AL P. B

v

temporal hoppings are
Af = e g @ Uy = (A7)
» Dirac projectors P, = %(]I Fly)

» B, are (spatial) Wilson Dirac operators on time-slice t
» all blocks are (4- N - L3 x4- N, - L3)-matrices



Dimensional reduction of QCD — Step 1

» Reduced Wilson fermion determinant is given by

det M 2(p) o< H det Q; - det []I + eﬂLLtT]
t

where T is the product of spatial matrices given by

T=T1Q t-(Qy)  =TIT:
t t

D, C
Q:::BtP¥+Pia Bt:( _ét Dtt: )

and

N e 1 DY 0
a-(5 5 ) @i Zon 1)



» Product of spatial matrices:

T=T1Q5 ¢4 (Quy)™t  or  T=[lUr1- (@) Q- Uf
t t

t-1 t t+1
) ]
- -
) e
- y’
2 /
- <

Q;r 'ut : (Qt_+1)_1



» Product of spatial matrices:

TZHQ:'ut'(Qt_+1)_1 or Tznu;l'(Q;)_l'Q:'u:
t t

t-1 t t+1
A ]
y -
A e
y y’
A /
y’ <

Uy (Q)HQf U



Structure of building blocks

» Several ways to rewrite spatial matrices:
% _(ay1 ot [ 10 D' 0 1 G
Te= (@) Qf_(Ct 1 0 D 0 1
> spectral property and determinant:

)\<—>i

o de(@) Qi -1

» Relation to 1d scattering matrix S¢:

= Dt_l Dt_l'Ct s [ G D
ﬂ_(ct‘Dt_l Dt+Ct'Dt_1'Ct it St_ Dt _Ct ’



Canonical projection and factorization — Step 243
Step 2: Canonical projection of QCD

det My, = [ det @ - 3 det T
t A

> sum is over all index sets A€ {1,2,...,2N7®} of size

max max 3
Al = NP4 Ny, NI =2- N - L2

* i.e., the trace over the minor matrix of rank Ng of T

Step 3: Factorization of QCD determinant

det My, = [Tdet @7 - TIM((Q0)7),, 0 M(Q¥ o MU )eon,.



Relation between quark and baryon number in QCD

Step 3: Factorization of QCD determinant

det My = TTdet Q- TITM((Q)! M(Q; MU
et My, = [Tdet @7 - TIM((Q0) ),y M(QE o MU )on,.

» Consider Z(N.)-transformation by e Z(N,):
Uy > UL = 2 - Uy at one fixed t.
» As a consequence we have

det My, > det My, = [[det @; - Y det(z, - )™ = 2 " . det My,
t A

and therefore yields

det My, =0 for Ng # Omod N .



Properties of minor matrices

Step 3: Factorization of QCD determinant

det My, = [Tdet Q¢ - TTM ((Q)7), 0 M(Q)moe MWUoIeon,,

» Note that

avoids inverting Q; .
» Consider temporal gauge link W; =44 ® Us(X, t) at x:
M(Wt)ktlzﬁl = 0 |f |Ct| * ‘at|

for Ct € Ct and dry1 € At+1-



Multi-level integration schemes

» Temporal gauge links in U{/; are completely decoupled:

t-1 t t+1
A A
y ’
A e
y ’
. /
- /

M(uf 1)\&—0%\' M ((Qt_)_l)x&\&t ’ M(Q:)\B\:\& ’ M(Mt)\&tx’ﬁ-l

> spatial matrix U/, is block diagonal:

= M(U;) trivial to calculate!



Multi-level integration schemes

» Spatial gauge links in Q; coupled through temporal
plaquettes only:

t-1 t t+1
e e
-z y
e e
/ y
2 2
/ -

M(Us-1 )¢, pa - M ((Q{)‘l)x\& M(Qf Ygpe, - MUs yem,,s
» spatial matrices Q; can be treated together:

M(Q) g, M@ g, = M (@)™ @y,



Correlation functions

» Source and sink operators S and S:

> remove or re-add indices from/to the index set,
> potentially change quark number N, e.g.,

(Ng) < (Ng)
e _7;_1’7 -SNq"Nq+3 ’ .SNq+3”Nq .7;’+]7 T

> vacuum sector corresponds to Ng =0

» Natural to construct improved estimators:

*» simulate directly the correlation function at C(t' - t),
» measure C(t'+1-t) relative to C(t' - t)

(C(t’ +1- t))C(t’—t) ~ e_aE

Ng+3)

from additional insertion 7,7 = T, 1

» All spectral information is contained in (ﬂ(Nq)).



» Complete temporal factorization of the Wilson fermion
determinant:

det My, = 1:[ det Q; - U M ((Q{ )_l)xtkt M(Q g MUy

t+1

» works for fixed quark numbers Ng
> allows for very flexible multi-level integration schemes
» cf. [Gattringer et al, Giusti et al, Chandrasekharan et al|

Q™ are strictly positive, (7;)gg not necessarily. . .




» Consider the Hamiltonian for the Hubbard model

H(p) == Y toll &0+ tioNeo+ U NyyNy,

(x.y),0 X,0 x

with particle number N, , = 6,]:,06)(,0.



Hubbard model with Trotter

» Consider the Hamiltonian for the Hubbard model

Hp) =— Y toll &0+ > tolNxo+ U NephN,

(x.y),0 X, x

with particle number N, ; = 6}:706)(’0.
» Trotter decomposition and coherent state representation yields
Zoc(p) = [ DutDpestvt v
with Euclidean action

S v u] = Y 0l vy + HWE, ¥ p].



Hubbard model with Trotter and Stratonovic

» Consider the Hamiltonian for the Hubbard model

’H(,u) == Z ty el,aéy,a + Z Mo Nx,o' +U Z NX7TNX7¢
X,0 X

(xoy)io

with particle number N, , = 6}:,06)(70.
» After a Hubbard-Stratonovich transformation we have
Zoc(u) = [ DUIDEDGp[gleZn STk v dive]
with S[¢F, Vo, ¢; 1o ] = I M[$; 1o ], and hence

- f D p[$] [ det M[¢; 1] -



Fermion matrix and dimensional reduction

» The fermion matrix has the structure

B 0 ... et Cdn,-1)
CT R X
0 ... —ehe C(QZSM_Q) B

for which the determinant can be reduced to
det M[¢§ Mo] = det BV - det (1 F eNt“f'T[d)])

where T[6] = B1C(¢n,1) ...  B1C(o).



Fermion matrix and dimensional reduction

» The fermion matrix has the structure

B 0 ... et Cdn,-1)
CT R X
0 ... —ehe C(QZSM_Q) B

for which the determinant can be reduced to
det M[¢§ Mo] = det BV - det (1 F eNt“f'T[d)])

where T[6] = B1C(¢n,1) ...  B1C(o).

» Transfer matrices are hence given by
(T:)i = det B - det[B- C(¢)]™
= det B det(B~)M . det C (¢, )4
= (-1)PU) det BY - det C(¢) K .



Transfer matrices

» Since C(¢;) can be chosen diagonal, we have

det C(¢e)* = 0 [T ¢x:
x¢J

and the HS field can be integrated out site by site:

f doy. e p(x, r)(bZ s =y, wy else

wr ifxgd xé¢S
xX,t —
wo ifxed xelt

» Finally, with TT, wy = W ({J7}) we have

Zc({No}) = Y H(HdetBJflJf“)W«Jf}), 7 = N,

(e \e



Zc({No}) = 3 T1 (Hdet BJ&J?) W ({7}

gyt Ve

index sets J;:

{3.6}

{4.5}
{4.5}

{27}
{27}

4,1 5 - o .




Relation to fermion bag formulation

» In d = 1 dimension the 'fermion bags' det B” can be
calculated analytically:

e o000 = ooooQ+ e o 0o

and one can prove that

det BY >0 for open b.c.

= there is no sign problem

» For periodic b.c. there is no sign problem either, because

ZP°(Ls —» 00) = Z&(Ls — o0)



